点击关注公众号,Java干货及时送达
学习 Spring Cloud 微服务的正确姿势!
用上 ChatGPT 啦,强的离谱!
终于把 Spring Boot 3.0 写成书了!
1.引言
高并发场景在现场的日常工作中很常见,特别是在互联网公司中,这篇文章就来通过秒杀商品来模拟高并发的场景。文章末尾会附上文章的所有代码、脚本和测试用例。
本文环境: SpringBoot 2.5.7 + MySQL 8.0 X + MybatisPlus + Swagger2.9.2
模拟工具: Jmeter
模拟场景: 减库存->创建订单->模拟支付
2.商品秒杀-超卖
在开发中,对于下面的代码,可能很熟悉:在Service里面加上@Transactional
事务注解和Lock锁。
Spring Boot 基础就不介绍了,推荐看这个免费教程:
控制层:Controller
@ApiOperation(value="秒杀实现方式——Lock加锁")
@PostMapping("/start/lock")
public Result startLock(long skgId){try {log.info("开始秒杀方式一...");final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;Result result = secondKillService.startSecondKillByLock(skgId, userId);if(result != null){log.info("用户:{}--{}", userId, result.get("msg"));}else{log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");}} catch (Exception e) {e.printStackTrace();} finally {}return Result.ok();
}
业务层:Service
@Override
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByLock(long skgId, long userId) {lock.lock();try {// 校验库存SecondKill secondKill = secondKillMapper.selectById(skgId);Integer number = secondKill.getNumber();if (number > 0) {// 扣库存secondKill.setNumber(number - 1);secondKillMapper.updateById(secondKill);// 创建订单SuccessKilled killed = new SuccessKilled();killed.setSeckillId(skgId);killed.setUserId(userId);killed.setState((short) 0);killed.setCreateTime(new Timestamp(System.currentTimeMillis()));successKilledMapper.insert(killed);// 模拟支付Payment payment = new Payment();payment.setSeckillId(skgId);payment.setSeckillId(skgId);payment.setUserId(userId);payment.setMoney(40);payment.setState((short) 1);payment.setCreateTime(new Timestamp(System.currentTimeMillis()));paymentMapper.insert(payment);} else {return Result.error(SecondKillStateEnum.END);}} catch (Exception e) {throw new ScorpiosException("异常了个乖乖");} finally {lock.unlock();}return Result.ok(SecondKillStateEnum.SUCCESS);
}
对于上面的代码应该没啥问题吧,业务方法上加事务,在处理业务的时候加锁。
但上面这样写法是有问题的,会出现超卖的情况,看下测试结果:模拟1000个并发,抢100商品。
这里在业务方法开始加了锁,在业务方法结束后释放了锁。但这里的事务提交却不是这样的,有可能在事务提交之前,就已经把锁释放了,这样会导致商品超卖现象。所以加锁的时机很重要!
另外,如果你近期准备面试跳槽,建议在Java面试库小程序在线刷题,涵盖 2000+ 道 Java 面试题,几乎覆盖了所有主流技术面试题。
3. 解决商品超卖
对于上面超卖现象,主要问题出现在事务中锁释放的时机,事务未提交之前,锁已经释放。(事务提交是在整个方法执行完)。如何解决这个问题呢,就是把加锁步骤提前
可以在controller层进行加锁
可以使用Aop在业务方法执行之前进行加锁
3.1 方式一(改进版加锁)
@ApiOperation(value="秒杀实现方式——Lock加锁")
@PostMapping("/start/lock")
public Result startLock(long skgId){// 在此处加锁lock.lock();try {log.info("开始秒杀方式一...");final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;Result result = secondKillService.startSecondKillByLock(skgId, userId);if(result != null){log.info("用户:{}--{}", userId, result.get("msg"));}else{log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");}} catch (Exception e) {e.printStackTrace();} finally {// 在此处释放锁lock.unlock();}return Result.ok();
}
上面这样的加锁就可以解决事务未提交之前,锁释放的问题,可以分三种情况进行压力测试:
并发数1000,商品100
并发数1000,商品1000
并发数2000,商品1000
对于并发量大于商品数的情况,商品秒杀一般不会出现少卖的请况,但对于并发数小于等于商品数的时候可能会出现商品少卖情况,这也很好理解。
对于没有问题的情况就不贴图了,因为有很多种方式,贴图会太多
3.2 方式二(AOP版加锁)
对于上面在控制层进行加锁的方式,可能显得不优雅,那就还有另一种方式进行在事务之前加锁,那就是AOP
自定义AOP注解
@Target({ElementType.PARAMETER, ElementType.METHOD})
@Retention(RetentionPolicy.RUNTIME)
@Documented
public @interface ServiceLock {String description() default "";
}
定义切面类
@Slf4j
@Component
@Scope
@Aspect
@Order(1) //order越小越是最先执行,但更重要的是最先执行的最后结束
public class LockAspect {/*** 思考:为什么不用synchronized* service 默认是单例的,并发下lock只有一个实例*/private static Lock lock = new ReentrantLock(true); // 互斥锁 参数默认false,不公平锁// Service层切点 用于记录错误日志@Pointcut("@annotation(com.scorpios.secondkill.aop.ServiceLock)")public void lockAspect() {}@Around("lockAspect()")public Object around(ProceedingJoinPoint joinPoint) {lock.lock();Object obj = null;try {obj = joinPoint.proceed();} catch (Throwable e) {e.printStackTrace();throw new RuntimeException();} finally{lock.unlock();}return obj;}
}
在业务方法上添加AOP注解
@Override
@ServiceLock // 使用Aop进行加锁
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByAop(long skgId, long userId) {try {// 校验库存SecondKill secondKill = secondKillMapper.selectById(skgId);Integer number = secondKill.getNumber();if (number > 0) {//扣库存secondKill.setNumber(number - 1);secondKillMapper.updateById(secondKill);//创建订单SuccessKilled killed = new SuccessKilled();killed.setSeckillId(skgId);killed.setUserId(userId);killed.setState((short) 0);killed.setCreateTime(new Timestamp(System.currentTimeMillis()));successKilledMapper.insert(killed);//支付Payment payment = new Payment();payment.setSeckillId(skgId);payment.setSeckillId(skgId);payment.setUserId(userId);payment.setMoney(40);payment.setState((short) 1);payment.setCreateTime(new Timestamp(System.currentTimeMillis()));paymentMapper.insert(payment);} else {return Result.error(SecondKillStateEnum.END);}} catch (Exception e) {throw new ScorpiosException("异常了个乖乖");}return Result.ok(SecondKillStateEnum.SUCCESS);
}
控制层:
@ApiOperation(value="秒杀实现方式二——Aop加锁")
@PostMapping("/start/aop")
public Result startAop(long skgId){try {log.info("开始秒杀方式二...");final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;Result result = secondKillService.startSecondKillByAop(skgId, userId);if(result != null){log.info("用户:{}--{}", userId, result.get("msg"));}else{log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");}} catch (Exception e) {e.printStackTrace();}return Result.ok();
}
这种方式在对锁的使用上,更高阶、更美观!
3.3 方式三(悲观锁一)
除了上面在业务代码层面加锁外,还可以使用数据库自带的锁进行并发控制。
悲观锁,什么是悲观锁呢?通俗的说,在做任何事情之前,都要进行加锁确认。这种数据库级加锁操作效率较低。
使用for update一定要加上事务,当事务处理完后,for update才会将行级锁解除
如果请求数和秒杀商品数量一致,会出现少卖
@ApiOperation(value="秒杀实现方式三——悲观锁")
@PostMapping("/start/pes/lock/one")
public Result startPesLockOne(long skgId){try {log.info("开始秒杀方式三...");final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;Result result = secondKillService.startSecondKillByUpdate(skgId, userId);if(result != null){log.info("用户:{}--{}", userId, result.get("msg"));}else{log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");}} catch (Exception e) {e.printStackTrace();}return Result.ok();
}
业务逻辑
@Override
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByUpdate(long skgId, long userId) {try {// 校验库存-悲观锁SecondKill secondKill = secondKillMapper.querySecondKillForUpdate(skgId);Integer number = secondKill.getNumber();if (number > 0) {//扣库存secondKill.setNumber(number - 1);secondKillMapper.updateById(secondKill);//创建订单SuccessKilled killed = new SuccessKilled();killed.setSeckillId(skgId);killed.setUserId(userId);killed.setState((short) 0);killed.setCreateTime(new Timestamp(System.currentTimeMillis()));successKilledMapper.insert(killed);//支付Payment payment = new Payment();payment.setSeckillId(skgId);payment.setSeckillId(skgId);payment.setUserId(userId);payment.setMoney(40);payment.setState((short) 1);payment.setCreateTime(new Timestamp(System.currentTimeMillis()));paymentMapper.insert(payment);} else {return Result.error(SecondKillStateEnum.END);}} catch (Exception e) {throw new ScorpiosException("异常了个乖乖");} finally {}return Result.ok(SecondKillStateEnum.SUCCESS);
}
Dao层
@Repository
public interface SecondKillMapper extends BaseMapper<SecondKill> {/*** 将此行数据进行加锁,当整个方法将事务提交后,才会解锁* @param skgId* @return*/@Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE")SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId);}
上面是利用for update进行对查询数据加锁,加的是行锁。
点击关注公众号,Java干货及时送达
3.4 方式四(悲观锁二)
悲观锁的第二种方式就是利用update更新命令来加表锁
/*** UPDATE锁表* @param skgId 商品id* @param userId 用户id* @return*/
@Override
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByUpdateTwo(long skgId, long userId) {try {// 不校验,直接扣库存更新int result = secondKillMapper.updateSecondKillById(skgId);if (result > 0) {//创建订单SuccessKilled killed = new SuccessKilled();killed.setSeckillId(skgId);killed.setUserId(userId);killed.setState((short) 0);killed.setCreateTime(new Timestamp(System.currentTimeMillis()));successKilledMapper.insert(killed);//支付Payment payment = new Payment();payment.setSeckillId(skgId);payment.setSeckillId(skgId);payment.setUserId(userId);payment.setMoney(40);payment.setState((short) 1);payment.setCreateTime(new Timestamp(System.currentTimeMillis()));paymentMapper.insert(payment);} else {return Result.error(SecondKillStateEnum.END);}} catch (Exception e) {throw new ScorpiosException("异常了个乖乖");} finally {}return Result.ok(SecondKillStateEnum.SUCCESS);
}
Dao层
@Repository
public interface SecondKillMapper extends BaseMapper<SecondKill> {/*** 将此行数据进行加锁,当整个方法将事务提交后,才会解锁* @param skgId* @return*/@Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE")SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId);@Update(value = "UPDATE seckill SET number=number-1 WHERE seckill_id=#{skgId} AND number > 0")int updateSecondKillById(@Param("skgId") long skgId);
}
3.5 方式五(乐观锁)
乐观锁,顾名思义,就是对操作结果很乐观,通过利用version字段来判断数据是否被修改
乐观锁,不进行库存数量的校验,直接做库存扣减
这里使用的乐观锁会出现大量的数据更新异常(抛异常就会导致购买失败)、如果配置的抢购人数比较少、比如120:100(人数:商品) 会出现少买的情况,不推荐使用乐观锁。
@ApiOperation(value="秒杀实现方式五——乐观锁")
@PostMapping("/start/opt/lock")
public Result startOptLock(long skgId){try {log.info("开始秒杀方式五...");final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;// 参数添加了购买数量Result result = secondKillService.startSecondKillByPesLock(skgId, userId,1);if(result != null){log.info("用户:{}--{}", userId, result.get("msg"));}else{log.info("用户:{}--{}", userId, "哎呦喂,人也太多了,请稍后!");}} catch (Exception e) {e.printStackTrace();}return Result.ok();
}
@Override
@Transactional(rollbackFor = Exception.class)
public Result startSecondKillByPesLock(long skgId, long userId, int number) {// 乐观锁,不进行库存数量的校验,直接try {SecondKill kill = secondKillMapper.selectById(skgId);// 剩余的数量应该要大于等于秒杀的数量if(kill.getNumber() >= number) {int result = secondKillMapper.updateSecondKillByVersion(number,skgId,kill.getVersion());if (result > 0) {//创建订单SuccessKilled killed = new SuccessKilled();killed.setSeckillId(skgId);killed.setUserId(userId);killed.setState((short) 0);killed.setCreateTime(new Timestamp(System.currentTimeMillis()));successKilledMapper.insert(killed);//支付Payment payment = new Payment();payment.setSeckillId(skgId);payment.setSeckillId(skgId);payment.setUserId(userId);payment.setMoney(40);payment.setState((short) 1);payment.setCreateTime(new Timestamp(System.currentTimeMillis()));paymentMapper.insert(payment);} else {return Result.error(SecondKillStateEnum.END);}}} catch (Exception e) {throw new ScorpiosException("异常了个乖乖");} finally {}return Result.ok(SecondKillStateEnum.SUCCESS);
}
@Repository
public interface SecondKillMapper extends BaseMapper<SecondKill> {/*** 将此行数据进行加锁,当整个方法将事务提交后,才会解锁* @param skgId* @return*/@Select(value = "SELECT * FROM seckill WHERE seckill_id=#{skgId} FOR UPDATE")SecondKill querySecondKillForUpdate(@Param("skgId") Long skgId);@Update(value = "UPDATE seckill SET number=number-1 WHERE seckill_id=#{skgId} AND number > 0")int updateSecondKillById(@Param("skgId") long skgId);@Update(value = "UPDATE seckill SET number=number-#{number},version=version+1 WHERE seckill_id=#{skgId} AND version = #{version}")int updateSecondKillByVersion(@Param("number") int number, @Param("skgId") long skgId, @Param("version")int version);
}
乐观锁会出现大量的数据更新异常(抛异常就会导致购买失败),会出现少买的情况,不推荐使用乐观锁。
锁是面试必问的,如果你近期准备面试跳槽,建议在Java面试库小程序在线刷题,涵盖 2000+ 道 Java 面试题,几乎覆盖了所有主流技术面试题。
3.6 方式六(阻塞队列)
利用阻塞队类,也可以解决高并发问题。其思想就是把接收到的请求按顺序存放到队列中,消费者线程逐一从队列里取数据进行处理,看下具体代码。
阻塞队列:这里使用静态内部类的方式来实现单例模式,在并发条件下不会出现问题。
// 秒杀队列(固定长度为100)
public class SecondKillQueue {// 队列大小static final int QUEUE_MAX_SIZE = 100;// 用于多线程间下单的队列static BlockingQueue<SuccessKilled> blockingQueue = new LinkedBlockingQueue<SuccessKilled>(QUEUE_MAX_SIZE);// 使用静态内部类,实现单例模式private SecondKillQueue(){};private static class SingletonHolder{// 静态初始化器,由JVM来保证线程安全private static SecondKillQueue queue = new SecondKillQueue();}/*** 单例队列* @return*/public static SecondKillQueue getSkillQueue(){return SingletonHolder.queue;}/*** 生产入队* @param kill* @throws InterruptedException* add(e) 队列未满时,返回true;队列满则抛出IllegalStateException(“Queue full”)异常——AbstractQueue* put(e) 队列未满时,直接插入没有返回值;队列满时会阻塞等待,一直等到队列未满时再插入。* offer(e) 队列未满时,返回true;队列满时返回false。非阻塞立即返回。* offer(e, time, unit) 设定等待的时间,如果在指定时间内还不能往队列中插入数据则返回false,插入成功返回true。*/public Boolean produce(SuccessKilled kill) {return blockingQueue.offer(kill);}/*** 消费出队* poll() 获取并移除队首元素,在指定的时间内去轮询队列看有没有首元素有则返回,否者超时后返回null* take() 与带超时时间的poll类似不同在于take时候如果当前队列空了它会一直等待其他线程调用notEmpty.signal()才会被唤醒*/public SuccessKilled consume() throws InterruptedException {return blockingQueue.take();}/*** 获取队列大小* @return*/public int size() {return blockingQueue.size();}
}
消费秒杀队列:实现ApplicationRunner接口
// 消费秒杀队列
@Slf4j
@Component
public class TaskRunner implements ApplicationRunner{@Autowiredprivate SecondKillService seckillService;@Overridepublic void run(ApplicationArguments var){new Thread(() -> {log.info("队列启动成功");while(true){try {// 进程内队列SuccessKilled kill = SecondKillQueue.getSkillQueue().consume();if(kill != null){Result result = seckillService.startSecondKillByAop(kill.getSeckillId(), kill.getUserId());if(result != null && result.equals(Result.ok(SecondKillStateEnum.SUCCESS))){log.info("TaskRunner,result:{}",result);log.info("TaskRunner从消息队列取出用户,用户:{}{}",kill.getUserId(),"秒杀成功");}}} catch (InterruptedException e) {e.printStackTrace();}}}).start();}
}
@ApiOperation(value="秒杀实现方式六——消息队列")
@PostMapping("/start/queue")
public Result startQueue(long skgId){try {log.info("开始秒杀方式六...");final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;SuccessKilled kill = new SuccessKilled();kill.setSeckillId(skgId);kill.setUserId(userId);Boolean flag = SecondKillQueue.getSkillQueue().produce(kill);// 虽然进入了队列,但是不一定能秒杀成功 进队出队有时间间隙if(flag){log.info("用户:{}{}",kill.getUserId(),"秒杀成功");}else{log.info("用户:{}{}",userId,"秒杀失败");}} catch (Exception e) {e.printStackTrace();}return Result.ok();
}
使用阻塞队列来实现秒杀,有几点要注意:
消费秒杀队列中调用业务方法加锁与不加锁情况一样,也就是
seckillService.startSecondKillByAop()
、seckillService.startSecondKillByLock()
方法结果一样,这也很好理解当队列长度与商品数量一致时,会出现少卖的现象,可以调大数值
下面是队列长度1000,商品数量1000,并发数2000情况下出现的少卖
3.7.方式七(Disruptor队列)
Disruptor是个高性能队列,研发的初衷是解决内存队列的延迟问题,在性能测试中发现竟然与I/O操作处于同样的数量级,基于Disruptor开发的系统单线程能支撑每秒600万订单。
// 事件生成工厂(用来初始化预分配事件对象)
public class SecondKillEventFactory implements EventFactory<SecondKillEvent> {@Overridepublic SecondKillEvent newInstance() {return new SecondKillEvent();}
}
// 事件对象(秒杀事件)
public class SecondKillEvent implements Serializable {private static final long serialVersionUID = 1L;private long seckillId;private long userId;// set/get方法略}
// 使用translator方式生产者
public class SecondKillEventProducer {private final static EventTranslatorVararg<SecondKillEvent> translator = (seckillEvent, seq, objs) -> {seckillEvent.setSeckillId((Long) objs[0]);seckillEvent.setUserId((Long) objs[1]);};private final RingBuffer<SecondKillEvent> ringBuffer;public SecondKillEventProducer(RingBuffer<SecondKillEvent> ringBuffer){this.ringBuffer = ringBuffer;}public void secondKill(long seckillId, long userId){this.ringBuffer.publishEvent(translator, seckillId, userId);}
}
// 消费者(秒杀处理器)
@Slf4j
public class SecondKillEventConsumer implements EventHandler<SecondKillEvent> {private SecondKillService secondKillService = (SecondKillService) SpringUtil.getBean("secondKillService");@Overridepublic void onEvent(SecondKillEvent seckillEvent, long seq, boolean bool) {Result result = secondKillService.startSecondKillByAop(seckillEvent.getSeckillId(), seckillEvent.getUserId());if(result.equals(Result.ok(SecondKillStateEnum.SUCCESS))){log.info("用户:{}{}",seckillEvent.getUserId(),"秒杀成功");}}
}
public class DisruptorUtil {static Disruptor<SecondKillEvent> disruptor;static{SecondKillEventFactory factory = new SecondKillEventFactory();int ringBufferSize = 1024;ThreadFactory threadFactory = runnable -> new Thread(runnable);disruptor = new Disruptor<>(factory, ringBufferSize, threadFactory);disruptor.handleEventsWith(new SecondKillEventConsumer());disruptor.start();}public static void producer(SecondKillEvent kill){RingBuffer<SecondKillEvent> ringBuffer = disruptor.getRingBuffer();SecondKillEventProducer producer = new SecondKillEventProducer(ringBuffer);producer.secondKill(kill.getSeckillId(),kill.getUserId());}
}
@ApiOperation(value="秒杀实现方式七——Disruptor队列")
@PostMapping("/start/disruptor")
public Result startDisruptor(long skgId){try {log.info("开始秒杀方式七...");final long userId = (int) (new Random().nextDouble() * (99999 - 10000 + 1)) + 10000;SecondKillEvent kill = new SecondKillEvent();kill.setSeckillId(skgId);kill.setUserId(userId);DisruptorUtil.producer(kill);} catch (Exception e) {e.printStackTrace();}return Result.ok();
}
经过测试,发现使用Disruptor队列队列,与自定义队列有着同样的问题,也会出现超卖的情况,但效率有所提高。
4. 小结
对于上面七种实现并发的方式,做一下总结:
一、二方式是在代码中利用锁和事务的方式解决了并发问题,主要解决的是锁要加载事务之前
三、四、五方式主要是数据库的锁来解决并发问题,方式三是利用for upate对表加行锁,方式四是利用update来对表加锁,方式五是通过增加version字段来控制数据库的更新操作,方式五的效果最差
六、七方式是通过队列来解决并发问题,这里需要特别注意的是,在代码中不能通过throw抛异常,否则消费线程会终止,而且由于进队和出队存在时间间隙,会导致商品少卖
上面所有的情况都经过代码测试,测试分一下三种情况:
并发数1000,商品数100
并发数1000,商品数1000
并发数2000,商品数1000
思考:分布式情况下如何解决并发问题呢?下次继续试验。
最后宣传下我的 ChatGPT 知识星球,R哥最近 ChatGPT 玩疯了,用它写文章、生成代码、做表格、写 PPT、写文案、做面试题,效率提升了 N 倍。
建议尽快上车,现在上手成本是越来越高了,不割韭菜,R哥是实实在在教大家东西。
星球分享了大量 ChatGPT 学习资料, 还输出了 50+ 篇保姆级教程,持续更新中,涉及方方面面,真正的高质量知识星球。
目前还是优惠价,快扫码加入吧:
1000 人后正式涨价啦,早就是优势!
End
学习 Spring Cloud 微服务的正确姿势!
博客园在绝境求生。。
用上 ChatGPT 啦,强的离谱!
吴恩达 ChatGPT 免费视频课程来了!
Java 20 正式发布,超神了。。
👇 点击阅读原文,玩转 ChatGPT!
本文链接:https://my.lmcjl.com/post/13191.html
4 评论