importpandas as pdimportmathimportcsvimportrandomimportnumpy as npfrom sklearn importlinear_modelfrom sklearn.model_selection importcross_val_score
base_elo= 1600team_elos={}
team_stats={}
X=[]
y=[]#初始化数据,从T,O,M表格中读取数据,取出一些无关数据并将这三个表格通过team树形列进行连接:#根据每个队伍的Miscellaneous Opponent,Team统计数据csv文件进行初始化
definitialize_data(Mstat,Ostat,Tstat):
new_Mstat= Mstat.drop(['Rk','Arena'],axis=1)
new_Ostat= Ostat.drop(['Rk',"G",'MP'],axis=1)
new_Tstat= Tstat.drop(['Rk',"G",'MP'],axis=1)
team_stats1= pd.merge(new_Mstat,new_Ostat,how='left',on='Team')
team_stats1= pd.merge(team_stats1,new_Tstat,how='left',on='Team')return team_stats1.set_index('Team',inplace=False,drop=True)defget_elo(team):try:returnteam_elos[team]except:
team_elos[team]=base_eloreturnteam_elos[team]defcalc_elo(win_team,lose_team):
winner_rank=get_elo(win_team)
loser_rank=get_elo(lose_team)#根据Logistic Distribution计算 PK 双方(A和B)对各自的胜率期望值计算公式
rank_diff = winner_rank -loser_rank
exp= (rank_diff *-1)/400odds= 1/(1+math.pow(10,exp))#根据rank界别修改k值
if winner_rank < 2100:
k= 32
elif winner_rank >=2100 and winner_rank <2400:
k= 24
else:
k=16
#更新rank数值
new_winner_rank = round(winner_rank+(k*(1-odds)))
new_loser_rank= round(loser_rank+(k*(0-odds)))returnnew_winner_rank,new_loser_rank#基于统计好的数据,给每只队伍的eloscore计算结果,建立对应15-16年数据集,我们认为主场作战的队伍更有优势,因此会给主场队伍加上100分
defbuild_dataSet(all_data):print("Building data set..")
X=[]
skip=0for index,row inall_data.iterrows():
Wteam= row['WTeam']
Lteam= row['LTeam']#获取最初的elo或者每个队伍最初的elo值
team1_elo =get_elo(Wteam)
team2_elo=get_elo(Lteam)#给主场比赛队伍加上100的elo值
if row['WLoc'] == 'H':
team1_elo+= 100
else:
team2_elo+= 100
#把elo当成评价每个队伍的第一个特征值
team1_features =[team1_elo]
team2_features=[team2_elo]#添加我们从basketball reference.com获得的每个队伍的统计信息
for key,value inteam_stats.loc[Wteam].iteritems():
team1_features.append(value)for key,value inteam_stats.loc[Lteam].iteritems():
team2_features.append(value)#将两支队伍的特征值随机的分配在每场比赛数据的左右两侧
#并将对应的0/1赋给y值
if random.random() > 0.5:
X.append(team1_features+team2_features)
y.append(0)else:
X.append(team2_features+team1_features)
y.append(1)if skip ==0:print('X',X)
skip= 1new_winner_rank,new_loser_rank=calc_elo(Wteam,Lteam)
team_elos[Wteam]=new_winner_rank
team_elos[Lteam]=new_loser_rankreturnnp.nan_to_num(X),y#最终利用训练好的模型在 16~17 年的常规赛数据中进行预测
defpredict_winner(team_1, team_2, model):
features=[]#team 1,客场队伍
features.append(get_elo(team_1))for key, value inteam_stats.loc[team_1].iteritems():
features.append(value)#team 2,主场队伍
features.append(get_elo(team_2) + 100)for key, value inteam_stats.loc[team_2].iteritems():
features.append(value)
features=np.nan_to_num(features)returnmodel.predict_proba([features])#最终在 main 函数中调用这些数据处理函数,使用 sklearn 的Logistic Regression方法建立回归模型
if __name__=='__main__':
folder= 'data'Mstat= pd.read_csv(folder + '/15-16Miscellaneous_Stat.csv')
Ostat= pd.read_csv(folder + '/15-16Opponent_Per_Game_Stat.csv')
Tstat= pd.read_csv(folder + '/15-16Team_Per_Game_Stat.csv')
team_stats=initialize_data(Mstat, Ostat, Tstat)
result_data= pd.read_csv(folder + '/2015-2016_result.csv')
X, y=build_dataSet(result_data)#训练网络模型
print("Fitting on %d game samples.." %len(X))
model=linear_model.LogisticRegression()
model.fit(X,y)print("Doing cross-validation..")
cross_val_score(model,X,y,cv= 10,scoring='accuracy',n_jobs=-1).mean()print(model)print('Predicting on new schedule..')
schedule1617= pd.read_csv(folder + '/16-17Schedule.csv')
result=[]for index, row inschedule1617.iterrows():
team1= row['Vteam']
team2= row['Hteam']
pred=predict_winner(team1, team2, model)
prob=pred[0][0]if prob > 0.5:
winner=team1
loser=team2
result.append([winner, loser, prob])else:
winner=team2
loser=team1
result.append([winner, loser,1 -prob])
with open('16-17Result.csv', 'w') as f:
writer=csv.writer(f)
writer.writerow(['win', 'lose', 'probability'])
writer.writerows(result)print('done.')
本文链接:https://my.lmcjl.com/post/13464.html
4 评论