简介:pandas 中的to_dict 可以对DataFrame类型的数据进行转换
可以选择六种的转换类型,分别对应于参数 ‘dict', ‘list', ‘series', ‘split', ‘records', ‘index',下面逐一介绍每种的用法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1、选择参数orient='dict'
dict也是默认的参数,下面的data数据类型为DataFrame结构, 会形成 {column -> {index -> value}}这样的结构的字典,可以看成是一种双重字典结构
- 单独提取每列的值及其索引,然后组合成一个字典
- 再将上述的列属性作为关键字(key),值(values)为上述的字典
查询方式为 :data_dict[key1][key2]
- data_dict 为参数选择orient='dict'时的数据名
- key1 为列属性的键值(外层)
- key2 为内层字典对应的键值
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
|
2、当关键字orient=' list' 时
和1中比较相似,只不过内层变成了一个列表,结构为{column -> [values]}
查询方式为: data_list[keys][index]
data_list 为关键字orient='list' 时对应的数据名
keys 为列属性的键值,如本例中的'age' , ‘embarked'等
index 为整型索引,从0开始到最后
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
3、关键字参数orient='series'
形成结构{column -> Series(values)}
调用格式为:data_series[key1][key2]或data_dict[key1]
data_series 为数据对应的名字
key1 为列属性的键值,如本例中的'age' , ‘embarked'等
key2 使用数据原始的索引(可选)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
|
4、关键字参数orient='split'
形成{index -> [index], columns -> [columns], data -> [values]}的结构,是将数据、索引、属性名单独脱离出来构成字典
调用方式有 data_split[‘index'],data_split[‘data'],data_split[‘columns']
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
5、当关键字orient='records' 时
形成[{column -> value}, … , {column -> value}]的结构
整体构成一个列表,内层是将原始数据的每行提取出来形成字典
调用格式为data_records[index][key1]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
6、当关键字orient='index' 时
形成{index -> {column -> value}}的结构,调用格式正好和'dict' 对应的反过来,请读者自己思考
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
|
以上这篇对pandas中to_dict的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持服务器之家。
原文链接:https://blog.csdn.net/m0_37804518/article/details/78444110
本文链接:https://my.lmcjl.com/post/3576.html
4 评论