这个问题在互联网上以各种形式被问到,而且有一个简单的答案,常常被忽略或混淆: 简单回答: Keras Conv2D层在多通道输入(例如彩色图像)的情况下,将在所有颜色通道上应用滤波器,并将结果求和,生成等效于单色卷积输出图像。在 (1)您正在使用CIFAR图像数据集进行培训,该数据集由32x32颜色图像组成,即每个图像都是形状(32,32,3)(RGB=3个通道 继续阅读
Search Results for: keras
查询到最新的3条
浅谈keras2 predict和fit_generator的坑
1、使用predict时,必须设置batch_size,否则效率奇低。 查看keras文档中,predict函数原型: 说明: 只使用batch_size=32,也就是说每次将batch_size=32的数据通过PCI总线传到GPU,然后进行预测。在一些问题中,batch_size=32明显是非常小的。而通过PCI传数据是非常耗时的。 所以,使用的时候会发现预测数据时效率奇低,其原因就是batch_size太小了。 经验: 使 继续阅读
深度学习:基于Keras的Python实践
深度学习:基于Keras的Python实践,由电子工业出版社在2018-06-01月出版发行,本书编译以及作者信息为: 魏贞原 著,这是第1次发行, 国际标准书号为:9787121341472,品牌为博文视点, 这本书采用平装开本为16开,纸张采为胶版纸,全书共有244页,字数万8字,值得推荐。此书内容摘要《深度学习:基于Keras的Python实践》本书系统讲解了深度学习的基本知识,以及使用深度学习解决实际问题,详细介绍了如何构建及优化模型,并针对不同的问题给出不同的解决方案,通过不同的例子展 继续阅读