文章目录 1 SVM概述1.1 概念1.2 SVM的优缺点1.2.1 优点1.2.2 缺点 2 在python中使用SVM2.1 scikit-learn库2.2 SVM在scikit-learn库中的使用2.2.1 安装依赖库2.2.2 svm.SVC2.2.3 应用实例 总结 1 SVM概述 1.1 概念 支持向量机(SVM)是一类按监督学习方式对数据进行二元分类的广义线性分类器,其决策边界是对学习样本求解的最大边距超平面&# 继续阅读
Search Results for: scikit
查询到最新的2条
python 缺失值处理的方法(Imputation)
一、缺失值的处理方法 由于各种各样的原因,真实世界中的许多数据集都包含缺失数据,这些数据经常被编码成空格、nans或者是其他的占位符。但是这样的数据集并不能被scikit - learn算法兼容,因为大多数的学习算法都会默认数组中的元素都是数值,因此素偶有的元素都有自己的代表意义。 使用不完整的数据集的一个基本策略就是舍弃掉整行或者整列包含缺失值的数值,但是这样处理会浪费大量有价值的数据。下面是处理缺失值的常用方法: 1.忽略元组 当缺少类别标签 继续阅读