本文是通过学习 AI研习社 炼丹兄 所做笔记!!!
1.1 .grad
例:,计算y关于w的梯度:
(上式计算中,)
import torch
w = torch.tensor([1.],requires_grad = True)
x = torch.tensor([2.],requires_grad = True)a = w + x
b = w + 1
y = a * by.backward()
print(w.grad)
1.2 .is_leaf
例:,计算y关于w的梯度:
(上式计算中,)
import torch
w = torch.tensor([1.],requires_grad = True)
x = torch.tensor([2.],requires_grad = True)a = w + x
b = w + 1
y = a * by.backward()
print(w.is_leaf,x.is_leaf,a.is_leaf,b.is_leaf,y.is_leaf)
print(w.grad,x.grad,a.grad,b.grad,y.grad)
1.3 .retain_grad()
例:,计算y关于w的梯度:
(上式计算中,)
import torch
w = torch.tensor([1.],requires_grad = True)
x = torch.tensor([2.],requires_grad = True)a = w + x
a.retain_grad()
b = w + 1
y = a * by.backward()
print(w.is_leaf,x.is_leaf,a.is_leaf,b.is_leaf,y.is_leaf)
print(w.grad,x.grad,a.grad,b.grad,y.grad)
1.4 .grad_fn
例:,计算y关于w的梯度:
(上式计算中,)
import torchw = torch.tensor([1.],requires_grad = True)
x = torch.tensor([2.],requires_grad = True)a = w + x
a.retain_grad()
b = w + 1
y = a * by.backward()
print(y.grad_fn)
print(a.grad_fn)
print(w.grad_fn)
本文链接:https://my.lmcjl.com/post/11265.html
展开阅读全文
4 评论