消息队列的流派
什么是 MQ
有 Broker 的 MQ
重 Topic
轻 Topic
AMQP 中有四种 exchange
- Direct exchange:key 就等于 queue
- Fanout exchange:无视 key,给所有的 queue 都来一份
- Topic exchange:key 可以用“宽字符”模糊匹配 queue
- Headers exchange:无视 key,通过查看消息的头部元数据来决定发给那个
- queue(AMQP 头部元数据非常丰富而且可以自定义)
这种结构的架构给通讯带来了很大的灵活性,我们能想到的通讯方式都可以用这四种exchange 表达出来。如果你需要一个企业数据总线(在乎灵活性)那么 RabbitMQ 绝对的值得一用
无 Broker 的 MQ
一、Kafka介绍
1.Kafka的使用场景
2.Kafka基本概念
首先,让我们来看一下基础的消息(Message)相关术语:
名称 | 解释 |
---|---|
Broker | 消息中间件处理节点,⼀个Kafka节点就是⼀个broker,⼀个或者多个Broker可以组成⼀个Kafka集群 |
Topic | Kafka根据topic对消息进⾏归类,发布到Kafka集群的每条消息都需要指定⼀个topic |
Producer | 消息⽣产者,向Broker发送消息的客户端 |
Consumer | 消息消费者,从Broker读取消息的客户端 |
ConsumerGroup | 每个Consumer属于⼀个特定的Consumer Group,⼀条消息可以被多个不同的Consumer Group消费,但是⼀个Consumer Group中只能有⼀个Consumer能够消费该消息 |
Partition | 物理上的概念,⼀个topic可以分为多个partition,每个partition内部消息是有序的 |
因此,从一个较高的层面上来看,producer通过网络发送消息到Kafka集群,然后consumer 来进行消费,如下图:
服务端(brokers)和客户端(producer、consumer)之间通信通过 TCP协议 来完成。
二、kafka基本使用
1.安装前的环境准备
-
安装jdk
-
安装zk
-
官网下载kafka的压缩包:http://kafka.apache.org/downloads
-
解压缩至如下路径
/usr/local/kafka/
Copy to clipboardErrorCopied -
修改配置文件:/usr/local/kafka/kafka2.11-2.4/config/server.properties
#broker.id属性在kafka集群中必须要是唯一 broker.id= 0 #kafka部署的机器ip和提供服务的端口号 listeners=PLAINTEXT://192.168.65.60:9092 #kafka的消息存储文件 log.dir=/usr/local/data/kafka-logs #kafka连接zookeeper的地址 zookeeper.connect= 192.168.65.60:2181
Copy to clipboardErrorCopied2.启动kafka服务器
进入到bin目录下。使用命令来启动
./kafka-server-start.sh -daemon../config/server.properties
Copy to clipboardErrorCopied
验证是否启动成功:
进入到zk中的节点看id是 0 的broker有没有存在(上线)
ls /brokers/ids/
Copy to clipboardErrorCopied
server.properties核心配置详解:
Property | Default | Description |
---|---|---|
broker.id | 0 | 每个broker都可以⽤⼀个唯⼀的⾮负整数id进⾏标识;这个id可以作为broker的“名字”,你可以选择任意你喜欢的数字作为id,只要id是唯⼀的即可。 |
log.dirs | /tmp/kafka-logs | kafka存放数据的路径。这个路径并不是唯⼀的,可以是多个,路径之间只需要使⽤逗号分隔即可;每当创建新partition时,都会选择在包含最少partitions的路径下进⾏。 |
listeners | PLAINTEXT://192.168.65.60:9092 | server接受客户端连接的端⼝,ip配置kafka本机ip即可 |
zookeeper.connect | localhost:2181 | zooKeeper连接字符串的格式为:hostname:port,此处hostname和port分别是ZooKeeper集群中某个节点的host和port;zookeeper如果是集群,连接⽅式为hostname1:port1, hostname2:port2,hostname3:port3 |
log.retention.hours | 168 | 每个⽇志⽂件删除之前保存的时间。默认数据保存时间对所有topic都⼀样。 |
num.partitions | 1 | 创建topic的默认分区数 |
default.replication.factor | 1 | ⾃动创建topic的默认副本数量,建议设置为⼤于等于2 |
min.insync.replicas | 1 | 当producer设置acks为-1时,min.insync.replicas指定replicas的最⼩数⽬(必须确认每⼀个repica的写数据都是成功的),如果这个数⽬没有达到,producer发送消息会产⽣异常 |
delete.topic.enable | false | 是否允许删除主题 |
3.创建主题topic
执行以下命令创建名为“test”的topic,这个topic只有一个partition,并且备份因子也设置为1
./kafka-topics.sh --create --zookeeper 172.16.253.35:2181 --replication-factor 1 --partitions 1 --topic test
Copy to clipboardErrorCopied
查看当前kafka内有哪些topic
./kafka-topics.sh --list --zookeeper 172.16.253.35:2181
Copy to clipboardErrorCopied
4.发送消息
./kafka-console-producer.sh --broker-list 172.16.253.38:9092 --topic test
Copy to clipboardErrorCopied
5.消费消息
对于consumer,kafka同样也携带了一个命令行客户端,会将获取到内容在命令中进行输 出, 默认是消费最新的消息 。使用kafka的消费者消息的客户端,从指定kafka服务器的指定 topic中消费消息
方式一:从最后一条消息的偏移量+1开始消费
./kafka-console-consumer.sh --bootstrap-server 172.16.253.38:9092 --topic test
Copy to clipboardErrorCopied
方式二:从头开始消费
./kafka-console-consumer.sh --bootstrap-server 172.16.253.38:9092 --from-beginning --topic test
Copy to clipboardErrorCopied
几个注意点:
- 消息会被存储
- 消息是顺序存储
- 消息是有偏移量的
- 消费时可以指明偏移量进行消费
三、Kafka中的关键细节
1.消息的顺序存储
2. 单播消息的实现
./kafka-console-consumer.sh --bootstrap-server 10.31.167.10:9092 --consumer-property group.id=testGroup --topic test
Copy to clipboardErrorCopied
3.多播消息的实现
在一些业务场景中需要让一条消息被多个消费者消费,那么就可以使用多播模式。
kafka实现多播,只需要让不同的消费者处于不同的消费组即可。
./kafka-console-consumer.sh --bootstrap-server 10.31.167.10:9092 --consumer-property group.id=testGroup1 --topic test./kafka-console-consumer.sh --bootstrap-server 10.31.167.10:9092 --consumer-property group.id=testGroup2 --topic test
Copy to clipboardErrorCopied
4.查看消费组及信息
# 查看当前主题下有哪些消费组
./kafka-consumer-groups.sh --bootstrap-server 10.31.167.10:9092 --list
# 查看消费组中的具体信息:比如当前偏移量、最后一条消息的偏移量、堆积的消息数量
./kafka-consumer-groups.sh --bootstrap-server 172.16.253.38:9092 --describe --group testGroup
Copy to clipboardErrorCopied
- Currennt-offset: 当前消费组的已消费偏移量
- Log-end-offset: 主题对应分区消息的结束偏移量(HW)
- Lag: 当前消费组未消费的消息数
四、主题、分区的概念
1.主题Topic
?主题Topic可以理解成是一个类别的名称。
2.partition分区
为一个主题创建多个分区
./kafka-topics.sh --create --zookeeper localhost:2181 --partitions 2 --topic test1
Copy to clipboardErrorCopied
可以通过这样的命令查看topic的分区信息
./kafka-topics.sh --describe --zookeeper localhost:2181 --topic test1
Copy to clipboardErrorCopied
分区的作用:
- 可以分布式存储
- 可以并行写
实际上是存在data/kafka-logs/test-0 和 test-1中的0000000.log文件中
小细节:
五、Kafka集群及副本的概念
1.搭建kafka集群, 3 个broker
准备 3 个server.properties文件
每个文件中的这些内容要调整
- server.properties
broker.id= 0 listeners=PLAINTEXT://192.168.65.60: log.dir=/usr/local/data/kafka-logs
Copy to clipboardErrorCopied - server1.properties
broker.id= 1 listeners=PLAINTEXT://192.168.65.60: log.dir=/usr/local/data/kafka-logs-
Copy to clipboardErrorCopied - server2.properties
broker.id= 2 listeners=PLAINTEXT://192.168.65.60: log.dir=/usr/local/data/kafka-logs-
Copy to clipboardErrorCopied使用如下命令来启动 3 台服务器
./kafka-server-start.sh -daemon../config/server0.properties
./kafka-server-start.sh -daemon../config/server1.properties
./kafka-server-start.sh -daemon../config/server2.properties
Copy to clipboardErrorCopied
搭建完后通过查看zk中的/brokers/ids 看是否启动成功
2.副本的概念
./kafka-topics.sh --create --zookeeper 172.16.253.35:2181 --replication-factor 3 --partitions 2 --topic my-replicated-topic
通过查看主题信息,其中的关键数据:
- replicas:当前副本存在的broker节点
- leader:副本里的概念
- 每个partition都有一个broker作为leader。
- 消息发送方要把消息发给哪个broker?就看副本的leader是在哪个broker上面。副本里的leader专⻔用来接收消息。
- 接收到消息,其他follower通过poll的方式来同步数据。
- follower:leader处理所有针对这个partition的读写请求,而follower被动复制leader,不提供读写(主要是为了保证多副本数据与消费的一致性),如果leader所在的broker挂掉,那么就会进行新leader的选举,至于怎么选,在之后的controller的概念中介绍。
通过kill掉leader后再查看主题情况
# kill掉leader
ps -aux | grep server.properties
kill 17631
# 查看topic情况
./kafka-topics.sh --describe --zookeeper 172.16.253.35:2181 --topic my-replicated-topic
Copy to clipboardErrorCopied
isr: 可以同步的broker节点和已同步的broker节点,存放在isr集合中。
3.broker、主题、分区、副本
- kafka集群中由多个broker组成
- 一个broker中存放一个topic的不同partition——副本
4.kafka集群消息的发送
./kafka-console-producer.sh --broker-list 172.16.253.38:9092,172.16.253.38:9093,172.16.253.38:9094 --topic my-replicated-topic
Copy to clipboardErrorCopied
5.kafka集群消息的消费
./kafka-console-consumer.sh --bootstrap-server 172.16.253.38:9092,172.16.253.38:9093,172.16.253.38:9094 --from-beginning --topic my-replicated-topic
Copy to clipboardErrorCopied
6.关于分区消费组消费者的细节
消费组中消费者的数量不能比一个topic中的partition数量多,否则多出来的消费者消费不到消息。
六、Kafka的Java客户端-生产者
1.引入依赖
<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.4.1</version>
</dependency>
Copy to clipboardErrorCopied
2.生产者发送消息的基本实现
#### //消息的发送方
public class MyProducer {private final static String TOPIC_NAME = "my-replicated-topic";public static void main(String[] args) throws ExecutionException,InterruptedException {
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"10.31.167.10:9092,10.31.167.10:9093,10.31.167.10:9094");
//把发送的key从字符串序列化为字节数组
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());
//把发送消息value从字符串序列化为字节数组
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,StringSerializer.class.getName());Producer<String, String> producer = new KafkaProducer<String,String>(props);Order order = new Order((long) i, i);
ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME, order.getOrderId().toString(), JSON.toJSONString(order));
RecordMetadata metadata = producer.send(producerRecord).get();
//=====阻塞=======
System.out.println("同步方式发送消息结果:" + "topic-" +metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" +metadata.offset());
Copy to clipboardErrorCopied
3.发送消息到指定分区上
ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME, 0 , order.getOrderId().toString(), JSON.toJSONString(order));
Copy to clipboardErrorCopied
4.未指定分区,则会通过业务key的hash运算,算出消息往哪个分区上发
//未指定发送分区,具体发送的分区计算公式:hash(key)%partitionNum
ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME, order.getOrderId().toString(), JSON.toJSONString(order));
Copy to clipboardErrorCopied
5.同步发送
生产者同步发消息,在收到kafka的ack告知发送成功之前一直处于阻塞状态
//等待消息发送成功的同步阻塞方法
RecordMetadata metadata = producer.send(producerRecord).get();
System.out.println("同步方式发送消息结果:" + "topic-" +metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" +metadata.offset());
6.异步发消息
生产者发消息,发送完后不用等待broker给回复,直接执行下面的业务逻辑。可以提供callback,让broker异步的调用callback,告知生产者,消息发送的结果
//要发送 5 条消息
Order order = new Order((long) i, i);
//指定发送分区
ProducerRecord<String, String> producerRecord = new ProducerRecord<String, String>(TOPIC_NAME, 0 , order.getOrderId().toString(),JSON.toJSONString(order));
//异步回调方式发送消息
producer.send(producerRecord, new Callback() {
public void onCompletion(RecordMetadata metadata, Exception exception) {
if (exception != null) {System.err.println("发送消息失败:" +exception.getStackTrace());
}
if (metadata != null) {
System.out.println("异步方式发送消息结果:" + "topic-" +metadata.topic() + "|partition-"+ metadata.partition() + "|offset-" + metadata.offset());}}
});
Copy to clipboardErrorCopied
7.关于生产者的ack参数配置
在同步发消息的场景下:生产者发动broker上后,ack会有 3 种不同的选择:
- ( 1 )acks=0: 表示producer不需要等待任何broker确认收到消息的回复,就可以继续发送下一条消息。性能最高,但是最容易丢消息。
- ( 2 )acks=1: 至少要等待leader已经成功将数据写入本地log,但是不需要等待所有follower是否成功写入。就可以继续发送下一条消息。这种情况下,如果follower没有成功备份数据,而此时leader又挂掉,则消息会丢失。
- ( 3 )acks=-1或all: 需要等待 min.insync.replicas(默认为 1 ,推荐配置大于等于2) 这个参数配置的副本个数都成功写入日志,这种策略会保证只要有一个备份存活就不会丢失数据。这是最强的数据保证。一般除非是金融级别,或跟钱打交道的场景才会使用这种配置。
code:
props.put(ProducerConfig.ACKS_CONFIG, "1");
Copy to clipboardErrorCopied
8.其他一些细节
- 发送会默认会重试 3 次,每次间隔100ms
- 发送的消息会先进入到本地缓冲区(32mb),kakfa会跑一个线程,该线程去缓冲区中取16k的数据,发送到kafka,如果到 10 毫秒数据没取满16k,也会发送一次。
七、消费者
1.消费者消费消息的基本实现
public class MyConsumer {
private final static String TOPIC_NAME = "my-replicated-topic";
private final static String CONSUMER_GROUP_NAME = "testGroup";public static void main(String[] args) {
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,"10.31.167.10:9092,10.31.167.10:9093,10.31.167.10:9094");
// 消费分组名
props.put(ConsumerConfig.GROUP_ID_CONFIG, CONSUMER_GROUP_NAME);
props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,StringDeserializer.class.getName());
//创建一个消费者的客户端
KafkaConsumer<String, String> consumer = new KafkaConsumer<String,String>(props);
// 消费者订阅主题列表
consumer.subscribe(Arrays.asList(TOPIC_NAME));while (true) {
/*
* poll() API 是拉取消息的⻓轮询
*/
ConsumerRecords<String, String> records =consumer.poll(Duration.ofMillis( 1000 ));
for (ConsumerRecord<String, String> record : records) {
System.out.printf("收到消息:partition = %d,offset = %d, key =%s, value = %s%n", record.partition(),record.offset(), record.key(), record.value());}}}
}
Copy to clipboardErrorCopied
2.自动提交offset
- 设置自动提交参数 - 默认
// 是否自动提交offset,默认就是true
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "true");
// 自动提交offset的间隔时间
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
Copy to clipboardErrorCopied
消费者poll到消息后默认情况下,会自动向broker的_consumer_offsets主题提交当前主题-分区消费的偏移量。
自动提交会丢消息: 因为如果消费者还没消费完poll下来的消息就自动提交了偏移量,那么此 时消费者挂了,于是下一个消费者会从已提交的offset的下一个位置开始消费消息。之前未被消费的消息就丢失掉了。
3.手动提交offset
- 设置手动提交参数
props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, "false");
Copy to clipboardErrorCopied
在消费完消息后进行手动提交
- 手动同步提交
if (records.count() > 0 ) { // 手动同步提交offset,当前线程会阻塞直到offset提交成功 // 一般使用同步提交,因为提交之后一般也没有什么逻辑代码了 consumer.commitSync(); }
Copy to clipboardErrorCopied - 手动异步提交
if (records.count() > 0 ) { // 手动异步提交offset,当前线程提交offset不会阻塞,可以继续处理后面的程序逻辑 consumer.commitAsync(new OffsetCommitCallback() { @Override public void onComplete(Map<TopicPartition, OffsetAndMetadata>offsets, Exception exception) {if (exception != null) {System.err.println("Commit failed for " + offsets);System.err.println("Commit failed exception: " +exception.getStackTrace());}}}); }
Copy to clipboardErrorCopied
4.消费者poll消息的过程
- 消费者建立了与broker之间的⻓连接,开始poll消息。
- 默认一次poll 500条消息
props.put(ConsumerConfig.MAX_POLL_RECORDS_CONFIG, 500 );
Copy to clipboardErrorCopied
可以根据消费速度的快慢来设置,因为如果两次poll的时间如果超出了30s的时间间隔,kafka会认为其消费能力过弱,将其踢出消费组。将分区分配给其他消费者。
可以通过这个值进行设置:
props.put(ConsumerConfig.MAX_POLL_INTERVAL_MS_CONFIG, 30 * 1000 );
Copy to clipboardErrorCopied
如果每隔1s内没有poll到任何消息,则继续去poll消息,循环往复,直到poll到消息。如果超出了1s,则此次⻓轮询结束。
ConsumerRecords<String, String> records =consumer.poll(Duration.ofMillis( 1000 ));
Copy to clipboardErrorCopied
消费者发送心跳的时间间隔
props.put(ConsumerConfig.HEARTBEAT_INTERVAL_MS_CONFIG, 1000 );
Copy to clipboardErrorCopied
kafka如果超过 10 秒没有收到消费者的心跳,则会把消费者踢出消费组,进行rebalance,把分区分配给其他消费者。
props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, 10 * 1000 );
Copy to clipboardErrorCopied
5.指定分区消费
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0 )));
Copy to clipboardErrorCopied
6.消息回溯消费
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0 )));
consumer.seekToBeginning(Arrays.asList(new TopicPartition(TOPIC_NAME,0 )));
Copy to clipboardErrorCopied
7.指定offset消费
consumer.assign(Arrays.asList(new TopicPartition(TOPIC_NAME, 0 )));
consumer.seek(new TopicPartition(TOPIC_NAME, 0 ), 10 );
Copy to clipboardErrorCopied
8.从指定时间点消费
List<PartitionInfo> topicPartitions =consumer.partitionsFor(TOPIC_NAME);
//从 1 小时前开始消费
long fetchDataTime = new Date().getTime() - 1000 * 60 * 60 ;
Map<TopicPartition, Long> map = new HashMap<>();
for (PartitionInfo par : topicPartitions) {map.put(new TopicPartition(TOPIC_NAME, par.partition()),fetchDataTime);
}
Map<TopicPartition, OffsetAndTimestamp> parMap =consumer.offsetsForTimes(map);
for (Map.Entry<TopicPartition, OffsetAndTimestamp> entry :parMap.entrySet()) {TopicPartition key = entry.getKey();OffsetAndTimestamp value = entry.getValue();if (key == null || value == null) continue;Long offset = value.offset();System.out.println("partition-" + key.partition() +"|offset-" + offset);System.out.println();//根据消费里的timestamp确定offsetif (value != null) {consumer.assign(Arrays.asList(key));consumer.seek(key, offset);}
}
Copy to clipboardErrorCopied
9.新消费组的消费偏移量
- latest(默认) :只消费自己启动之后发送到主题的消息
- earliest:第一次从头开始消费,以后按照消费offset记录继续消费,这个需要区别于consumer.seekToBeginning(每次都从头开始消费)
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
Copy to clipboardErrorCopied八 、Springboot中使用Kafka
1.引入依赖
<dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId>
</dependency>
Copy to clipboardErrorCopied
2.配置文件
server:port: 8080
spring:kafka:bootstrap-servers: 172.16.253.21: 9093producer: # 生产者retries: 3 # 设置大于 0 的值,则客户端会将发送失败的记录重新发送batch-size: 16384buffer-memory: 33554432acks: 1# 指定消息key和消息体的编解码方式key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializerconsumer:group-id: default-groupenable-auto-commit: falseauto-offset-reset: earliestkey-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializermax-poll-records: 500listener:# 当每一条记录被消费者监听器(ListenerConsumer)处理之后提交# RECORD# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后提交# BATCH# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于TIME时提交# TIME# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,被处理record数量大于等于COUNT时提交# COUNT# TIME | COUNT 有一个条件满足时提交# COUNT_TIME# 当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后, 手动调用Acknowledgment.acknowledge()后提交# MANUAL# 手动调用Acknowledgment.acknowledge()后立即提交,一般使用这种# MANUAL_IMMEDIATEack-mode: MANUAL_IMMEDIATEredis:host: 172.16.253.21
Copy to clipboardErrorCopied
3.消息生产者
- 发送消息到指定topic
@RestController
public class KafkaController {private final static String TOPIC_NAME = "my-replicated-topic";@Autowiredprivate KafkaTemplate<String, String> kafkaTemplate;@RequestMapping("/send")public void send() {kafkaTemplate.send(TOPIC_NAME, 0 , "key", "this is a msg");}
}
Copy to clipboardErrorCopied
4.消息消费者
-
设置消费组,消费指定topic
@KafkaListener(topics = "my-replicated-topic",groupId = "MyGroup1") public void listenGroup(ConsumerRecord<String, String> record,Acknowledgment ack) {String value = record.value();System.out.println(value);System.out.println(record);//手动提交offsetack.acknowledge(); }
Copy to clipboardErrorCopied -
设置消费组、多topic、指定分区、指定偏移量消费及设置消费者个数。
@KafkaListener(groupId = "testGroup", topicPartitions = {
@TopicPartition(topic = "topic1", partitions = {"0", "1"}),
@TopicPartition(topic = "topic2", partitions = "0",partitionOffsets = @PartitionOffset(partition = "1",initialOffset = "100"))}
,concurrency = "3")//concurrency就是同组下的消费者个数,就是并发消费数,建议小于等于分区总数
public void listenGroup(ConsumerRecord<String, String> record,Acknowledgment ack) {String value = record.value();System.out.println(value);System.out.println(record);//手动提交offsetack.acknowledge();
}
Copy to clipboardErrorCopied
九、Kafka集群Controller、Rebalance和HW
1.Controller
- Kafka集群中的broker在zk中创建临时序号节点,序号最小的节点(最先创建的节点)将作为集群的controller,负责管理整个集群中的所有分区和副本的状态:
- 当某个分区的leader副本出现故障时,由控制器负责为该分区选举新的leader副本。
- 当检测到某个分区的ISR集合发生变化时,由控制器负责通知所有broker更新其元数据信息。
- 当使用kafka-topics.sh脚本为某个topic增加分区数量时,同样还是由控制器负责让新分区被其他节点感知到。
2.Rebalance机制
前提是:消费者没有指明分区消费。当消费组里消费者和分区的关系发生变化,那么就会触发rebalance机制。
这个机制会重新调整消费者消费哪个分区。
在触发rebalance机制之前,消费者消费哪个分区有三种策略:
- range:通过公示来计算某个消费者消费哪个分区
- 轮询:大家轮着消费
- sticky:在触发了rebalance后,在消费者消费的原分区不变的基础上进行调整。
3.HW和LEO
十、Kafka线上问题优化
1.如何防止消息丢失
- 发送方: ack是 1 或者-1/all 可以防止消息丢失,如果要做到99.9999%,ack设成all,把min.insync.replicas配置成分区备份数
- 消费方:把自动提交改为手动提交。
2.如何防止消息的重复消费
幂等性如何保证:
- mysql 插入业务id作为主键,主键是唯一的,所以一次只能插入一条
- 使用redis或zk的分布式锁(主流的方案)
3.如何做到顺序消费RocketMQ
- 发送方:在发送时将ack不能设置 0 ,关闭重试,使用同步发送,等到发送成功再发送下一条。确保消息是顺序发送的。
- 接收方:消息是发送到一个分区中,只能有一个消费组的消费者来接收消息。因此,kafka的顺序消费会牺牲掉性能。
4.解决消息积压问题
- 方案一:在一个消费者中启动多个线程,让多个线程同时消费。——提升一个消费者的消费能力(增加分区增加消费者)。
- 方案二:如果方案一还不够的话,这个时候可以启动多个消费者,多个消费者部署在不同的服务器上。其实多个消费者部署在同一服务器上也可以提高消费能力——充分利用服务器的cpu资源。
- 方案三:让一个消费者去把收到的消息往另外一个topic上发,另一个topic设置多个分区和多个消费者 ,进行具体的业务消费。
5.延迟队列
延迟队列的应用场景:在订单创建成功后如果超过 30 分钟没有付款,则需要取消订单,此时可用延时队列来实现
-
创建多个topic,每个topic表示延时的间隔
- topic_5s: 延时5s执行的队列
- topic_1m: 延时 1 分钟执行的队列
- topic_30m: 延时 30 分钟执行的队列
-
消息发送者发送消息到相应的topic,并带上消息的发送时间
-
消费者订阅相应的topic,消费时轮询消费整个topic中的消息
- 如果消息的发送时间,和消费的当前时间超过预设的值,比如 30 分钟
- 如果消息的发送时间,和消费的当前时间没有超过预设的值,则不消费当前的offset及之后的offset的所有消息都消费
- 下次继续消费该offset处的消息,判断时间是否已满足预设值
十一、Kafka-eagle监控平台
安装Kafka-eagle
官网下载压缩包
EFAK
- 安装jdk
- 解压缩后修改配置文件 system-config.properties
# 配置zk 去掉cluster2
efak.zk.cluster.alias=cluster1
cluster1.zk.list=172.16.253.35:2181
# cluster2.zk.list=xdn10:2181,xdn11:2181,xdn12:2181# 配置mysql
kafka.eagle.driver=com.mysql.cj.jdbc.Driver
kafka.eagle.url=jdbc:mysql://172.16.253.22:3306/ke?useUnicode=true&characterEncoding=UTF-8&zeroDateTimeBehavior=convertToNull
kafka.eagle.username=root
kafka.eagle.password= 123456
Copy to clipboardErrorCopied
-
修改/etc/profile
export JAVA_HOME=/usr/local/jdk/jdk1.8.0_191 CLASSPATH=.:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar export KE_HOME=/home/aisys/efak-web-2.0.9 export PATH=$PATH:$KE_HOME/bin:$JAVA_HOME/bin
Copy to clipboardErrorCopied -
刷新配置
source /etc/profile
Copy to clipboardErrorCopied -
进入到bin目录,为ke.sh增加可执行的权限
chmod +x ke.sh
Copy to clipboardErrorCopied
- 启动kafka-eagle
./ke.sh start
本文链接:https://my.lmcjl.com/post/1302.html
4 评论