pytorch模型训练
这里以pytorch平台和mobilenet v2网络为例,给出模型的训练过程。具体代码如下所示:
import os
import torchvision.transforms as transforms
from torchvision import datasets
import torch.utils.data as data
import torch
import numpy as np
import torchvision.models as models
import torchvision.datasets as datasets
from torch.utils.data import random_split
#模型加载
model = models.mobilenet_v2(pretrained=True)
model.classifier = torch.nn.Sequential(torch.nn.Dropout(p=0.5),torch.nn.Linear(1280, 5))
print("model:")
print(model)
#参数
BATCH_SIZE = 32
DEVICE = 'cuda'
epoch_n = 10
#数据集加载
image_path = 'E:/MobileNets-V2-master/flower_photos'
flower_class = ['daisy','dandelion','roses','sunflowers','tulips']transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),"val": transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
}
#
full_data = datasets.ImageFolder(root=image_path,transform=transform['train'])
train_size = int(len(full_data)*0.8)
test_size = len(full_data) - train_size
train_dataset, test_dataset =random_split(full_data, [train_size, test_size])
train_loader = data.DataLoader(train_dataset, batch_size=BATCH_SIZE, num_workers=0, shuffle=True)
test_loader = data.DataLoader(test_dataset, batch_size=BATCH_SIZE, num_workers=0, shuffle=False)print("Training data size: {}".format(len(train_dataset)))
print("Testing data size: {}".format(len(test_dataset)))#损失函数和优化器
loss_f = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.00001)
# 模型训练和参数优化
torch.cuda.empty_cache()
model=model.to(DEVICE)
best_acc=0
#
for epoch in range(epoch_n):print("Epoch {}/{}".format(epoch + 1, epoch_n))print("-" * 10)# 设置为True,会进行Dropout并使用batch mean和batch varprint("Training...")model.train(True)running_loss = 0.0running_corrects = 0# enuerate(),返回的是索引和元素for batch, data in enumerate(train_loader):X, y = dataX=X.to(DEVICE)y=y.to(DEVICE)y_pred = model(X)# pred,概率较大值对应的索引值,可看做预测结果_, pred = torch.max(y_pred.data, 1)# 梯度归零optimizer.zero_grad()# 计算损失loss = loss_f(y_pred, y)loss.backward()optimizer.step()# 计算损失和running_loss += float(loss)# 统计预测正确的图片数running_corrects += torch.sum(pred == y.data)if batch%10==9:print("loss=",running_loss/(BATCH_SIZE*10))print("acc is {}%".format(running_corrects.item()/(BATCH_SIZE*10)*100.0))running_loss=0running_corrects=0#print("validating...")model.eval()val_loss=0.0correct=0total=0with torch.no_grad():for batch_idx,(inputs,targets) in enumerate(test_loader):inputs,targets=inputs.to(DEVICE),targets.to(DEVICE)outputs=model(inputs)loss=loss_f(outputs,targets.long())_,preds=outputs.max(1)val_loss+=loss.item()total+=targets.size(0)correct+=preds.eq(targets).sum().item()acc=100.0*correct/totalprint("Epoch={},val loss={}".format(epoch,val_loss/total))print("Epoch={},val acc={}%".format(epoch,acc))#if acc>best_acc:#print("current accuracy={},saving...".format(acc))torch.save(model,"model.pth")best_acc=acc
导出为ONNX格式
ONNX是一种针对机器学习所设计的开放式的文件格式,用于存储训练好的模型。它使得不同的人工智能框架(如Pytorch, MXNet)可以采用相同格式存储模型数据并交互。 ONNX的规范及代码主要由微软,亚马逊 ,Facebook 和 IBM 等公司共同开发,以开放源代码的方式托管在Github上。目前官方支持加载ONNX模型并进行推理的深度学习框架有:Caffe2, PyTorch,MXNet,ML.NET,TensorRT和Microsoft CNTK,并且TensorFlow也非官方的支持ONNX。
在Pytorch中,我们可以使用官方自带的torch.onnx.export函数将模型转换成ONNX的函数:
from turtle import mode
import onnx
import torch
#from SpectralCirC3D import SpectralCirC3D
#from mobilenetv2 import modeldef export(): model = torch.load("model.pth")print(model)batch_size = 1 input_shape = (3, 224, 224) #input data shape# #set the model to inference modemodel.eval()x = torch.randn(batch_size, *input_shape).cuda() # 生成张量y = model(x)print(x.size())print(y.size())export_onnx_file = "mobilenetv2.onnx" # 目的ONNX文件名torch.onnx.export(model,x,export_onnx_file,opset_version=14,example_outputs=y,do_constant_folding=True, # 是否执行常量折叠优化input_names=["input"], # 输入名output_names=["output"], # 输出名dynamic_axes={"input":{0:"batch_size"}, # 批处理变量"output":{0:"batch_size"}})def check_onnx():# Load the ONNX modelmodel = onnx.load("mobilenetv2.onnx")# Check that the IR is well formedonnx.checker.check_model(model)# Print a human readable representation of the graphprint(onnx.helper.printable_graph(model.graph))if __name__=='__main__':export()check_onnx()
如代码所示,export函数用于将pytorch模型导出为onnx格式,在导出前,我们需要显式地指定输入数据的尺寸,批大小,在导出过程中,还可以进行常量折叠优化等。
check_onnx函数则用于检查导出后的onnx文件是否符合规范。
onnxruntime推理
ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端,包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。
import argparse
import numpy as np
import onnxruntime
import time
import torchvision.datasets as datasets
from torch.utils.data import random_split
import torch.utils.data as data
import torchvision.transforms as transforms
from onnxruntime.quantization import QuantFormat, QuantType, quantize_staticdef load_data():#数据集加载image_path = 'E:/MobileNets-V2-master/flower_photos'transform = {"train": transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),"val": transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}#full_data = datasets.ImageFolder(root=image_path,transform=transform['val']) train_size = int(len(full_data)*0.8) test_size = len(full_data) - train_sizetrain_dataset, test_dataset =random_split(full_data, [train_size, test_size])train_loader = data.DataLoader(train_dataset, batch_size=1, num_workers=0, shuffle=True)test_loader = data.DataLoader(test_dataset, batch_size=1, num_workers=0, shuffle=False)return train_loader,test_loaderdef benchmark(model_path,device):if device=='cpu':print("using CPUExecutionProvider")session = onnxruntime.InferenceSession(model_path,providers=['CPUExecutionProvider'])else:print("using CUDAExecutionProvider")session = onnxruntime.InferenceSession(model_path,providers=['CUDAExecutionProvider'])input_name = session.get_inputs()[0].nameoutput_name = session.get_outputs()[0].nameprint("input name:{}".format(input_name))print("output name:{}".format(output_name))total = 0.0runs = 10input_data = np.zeros((1, 3, 224, 224), np.float32)# Warming upoutput = session.run([output_name], {input_name: input_data})print(output[0].shape)for i in range(runs):start = time.perf_counter()_ = session.run([], {input_name: input_data})end = (time.perf_counter() - start) * 1000total += endprint(f"{end:.2f}ms")total /= runsprint(f"Avg: {total:.2f}ms")def infer_test(model_path,data_loader,device):if device=='cpu':print("using CPUExecutionProvider")session = onnxruntime.InferenceSession(model_path,providers=['CPUExecutionProvider'])else:print("using CUDAExecutionProvider")session = onnxruntime.InferenceSession(model_path,providers=['CUDAExecutionProvider'])#input_name = session.get_inputs()[0].nameoutput_name = session.get_outputs()[0].name#total = 0.0correct = 0for batch,data in enumerate(data_loader):X, y = dataX = X.numpy()y = y.numpy()#output = session.run([output_name], {input_name: X})[0]y_pred = np.argmax(output,axis=1)#if y[0]==y_pred[0]:correct+=1total+=1#print("accuracy is {}%".format(correct/total*100.0))def main():input_model_path = "mobilenetv2.onnx"device=input("cpu or gpu?")#test latencybenchmark(input_model_path,device)train_loader,test_loader = load_data()print(len(train_loader))print(len(test_loader))#test accuracyinfer_test(input_model_path,test_loader,device)if __name__ == "__main__":main()
- 实验结果
如上图所示,CPU平台上单张图片的推理时间约为3.29ms,而GPU平台上单张图片的推理时间约为2.91ms。
本文链接:https://my.lmcjl.com/post/1538.html
展开阅读全文
4 评论