从0到1快速入门机场代码智能提取应用场景
- Introduce 简介
- setting 设置
- Prompt 提示
- Sample response 回复样本
- API request 接口请求
- python接口请求示例
- node.js接口请求示例
- curl命令示例
- json格式示例
- 其它资料下载
ChatGPT是目前最先进的AI聊天机器人,它能够理解图片和文字,生成流畅和有趣的回答。如果你想跟上AI时代的潮流,你一定要学会使用ChatGPT。如果你想了解OpenAI最新发布的GPT-4模型,以及它如何为ChatGPT聊天机器人带来更强大的功能,那么你一定不要错过OpenAI官网推荐的48种最佳应用场景,不管你是资深开发者、初学者,你都能够从0到1快速入门,并掌握他们。
ChatGPT可以识别简单口头指令/对话提示,并根据它们来提取机场代码。例如,如果你说“从(城市/国家)到(城市/国家)”,ChatGPT就会迅速找出从那里出发的机场代码,以及要去的机场代码,以帮助你最快地安排行程。
Introduce 简介
Airport code extractor 机场代码提取器
A simple prompt for extracting airport codes from text.
从文本中提取机场代码的简单提示。
setting 设置
Engine
: text-davinci-003
Max tokens
:60
Temperature
:0
Top p
:1.0
Frequency penalty
:0.0
Presence penalty
:0.0
Stop sequence
:\n
Prompt 提示
Sample response 回复样本
API request 接口请求
python接口请求示例
import os
import openaiopenai.api_key = os.getenv("OPENAI_API_KEY")response = openai.Completion.create(model="text-davinci-003",prompt="Extract the airport codes from this text:\n\nText: \"I want to fly from Los Angeles to Miami.\"\nAirport codes: LAX, MIA\n\nText: \"I want to fly from Orlando to Boston\"\nAirport codes:",temperature=0,max_tokens=60,top_p=1.0,frequency_penalty=0.0,presence_penalty=0.0,stop=["\n"]
)
node.js接口请求示例
const { Configuration, OpenAIApi } = require("openai");const configuration = new Configuration({apiKey: process.env.OPENAI_API_KEY,
});
const openai = new OpenAIApi(configuration);const response = await openai.createCompletion({model: "text-davinci-003",prompt: "Extract the airport codes from this text:\n\nText: \"I want to fly from Los Angeles to Miami.\"\nAirport codes: LAX, MIA\n\nText: \"I want to fly from Orlando to Boston\"\nAirport codes:",temperature: 0,max_tokens: 60,top_p: 1.0,frequency_penalty: 0.0,presence_penalty: 0.0,stop: ["\n"],
});
curl命令示例
curl https://api.openai.com/v1/completions \-H "Content-Type: application/json" \-H "Authorization: Bearer $OPENAI_API_KEY" \-d '{"model": "text-davinci-003","prompt": "Extract the airport codes from this text:\n\nText: \"I want to fly from Los Angeles to Miami.\"\nAirport codes: LAX, MIA\n\nText: \"I want to fly from Orlando to Boston\"\nAirport codes:","temperature": 0,"max_tokens": 60,"top_p": 1.0,"frequency_penalty": 0.0,"presence_penalty": 0.0,"stop": ["\n"]
}'
json格式示例
{"model": "text-davinci-003","prompt": "Extract the airport codes from this text:\n\nText: \"I want to fly from Los Angeles to Miami.\"\nAirport codes: LAX, MIA\n\nText: \"I want to fly from Orlando to Boston\"\nAirport codes:","temperature": 0,"max_tokens": 60,"top_p": 1.0,"frequency_penalty": 0.0,"presence_penalty": 0.0,"stop": ["\n"]
}
其它资料下载
如果大家想继续了解人工智能相关学习路线和知识体系,欢迎大家翻阅我的另外一篇博客《重磅 | 完备的人工智能AI 学习——基础知识学习路线,所有资料免关注免套路直接网盘下载》
这篇博客参考了Github知名开源平台,AI技术平台以及相关领域专家:Datawhale,ApacheCN,AI有道和黄海广博士等约有近100G相关资料,希望能帮助到所有小伙伴们。
本文链接:https://my.lmcjl.com/post/944.html
4 评论