查询到最新的12条

深度学习入门 基于Python的理论与实现

推荐编程书籍:深度学习入门 基于Python的理论与实现,由人民邮电出版社2018-07-01月出版发行,本书编译以及作者信息 为:斋藤康毅 著,陆宇杰 译,此次为第1次发行, 国际标准书号为:9787115485588,品牌为人民邮电出版社, 这本书采用平装开本为大32开,纸张采为胶版纸,全书共有285页字数万字,是本Python 编程相关非常不错的书。此书内容摘要 本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用Python3 继续阅读

深入理解深度学习——BERT(Bidirectional Encoder Representations fr

分类目录:《深入理解深度学习》总目录 BERT是由堆叠的Transformer Encoder层组成核心网络,辅以词编码和位置编码而成的。BERT的网络形态与GPT非常相似。简化版本的ELMo、GPT和BERT的网络结构如下图所示。图中的“Trm”表示Transformer Block,即基于Transformer的特征提取器。 ELMo使用自左向右编码和自右向左编码的两个LSTM网络,分别以 P ( w i ∣ w 1 , w 继续阅读

【MATLAB第42期】基于MATLAB的贝叶斯优化决策树分类算法与网格搜索、随机搜索对比,含对机器学习模型的

【MATLAB第42期】基于MATLAB的贝叶斯优化决策树分类算法与网格搜索、随机搜索对比,含对机器学习模型的评估度量介绍 网格搜索、随机搜索和贝叶斯优化是寻找机器学习模型参数最佳组合、交叉验证每个参数并确定哪一个参数具有最佳性能的常用方法。 一、 评估指标 1、分类 1.1 准确性 1.2 精度 1.3 召回 1.4 F1值 1.5 F0.5值 1.6 F2值 1.7 计算评估指标的功能 2、回归 2.1 平均绝对误差 2.2 均方误差 2.3 均方根误差 二、 基于F1值执 继续阅读

ChatGPT提示的艺术—编写清晰有效提示指南(一)

术语解释所谓 ChatGPT 提示(Prompt),就是你与 ChatGPT 对话的时候在输入框输入的文本内容前言欢迎来到《ChatGPT提示的艺术:编写清晰有效提示指南》!在这个指南中,您将学习到有关如何制定清晰有效的 ChatGPT 提示以促进有趣和信息丰富的对话的一切。无论您是初学者还是经验丰富的 ChatGPT 用户,这本小册都适合您。从了解有效提示的原则到掌握构建清晰简明提示的艺术&#xf 继续阅读

【深度学习】5-5 与学习相关的技巧 - 超参数的验证

超参数指的是,比如各层的神经元数量、batch大小、参数更新时的学习率或权值衰减等。如果这些超参数没有设置合适的值,模型的性能就会很差。 那么如何能够高效地寻找超参数的值的方法 验证数据 之前我们使用的数据集分成了训练数据和测试数据,训练数据用于学习测试数据用于评估泛化能力。 下面要对超参数设置各种各样的值以进行验证。这里要注意的是不能使用测试数据评估超参数的性能。这一点非常重要,但也容易被忽视。为什么不能使用测试数据评估超参数的性能&# 继续阅读

【深度学习】5-2 与学习相关的技巧 - 权重的初始值

在神经网络的学习中,权重的初始值特别重要。实际上,设定什么样的权重初始值,经常关系到神经网络的学习能否成功。本节将介绍权重初始值的推荐值,并通过实验确认神经网络的学习是否会快速进行。 可以将权重初始值设为0吗 后面我们会介绍抑制过拟合、提高泛化能力的技巧 —— 权值衰减。 权值衰减就是一种以减小权重参数的值为目的进行学习的方法。 如果想减小权重的值,一开始就将初始值设为较小的值才是正途。实际上在这之前的权重初始值都是像0. 继续阅读

深度学习:基于Keras的Python实践

深度学习:基于Keras的Python实践,由电子工业出版社在2018-06-01月出版发行,本书编译以及作者信息为: 魏贞原 著,这是第1次发行, 国际标准书号为:9787121341472,品牌为博文视点, 这本书采用平装开本为16开,纸张采为胶版纸,全书共有244页,字数万8字,值得推荐。此书内容摘要《深度学习:基于Keras的Python实践》本书系统讲解了深度学习的基本知识,以及使用深度学习解决实际问题,详细介绍了如何构建及优化模型,并针对不同的问题给出不同的解决方案,通过不同的例子展 继续阅读

最新基于MATLAB 2023a的机器学习、深度学习实践应用

MATLAB 2023版的深度学习工具箱,提供了完整的工具链,使您能够在一个集成的环境中进行深度学习的建模、训练和部署。与Python相比,MATLAB的语法简洁、易于上手,无需繁琐的配置和安装,能够更快地实现深度学习的任务。 MATLAB的深度学习工具箱提供了丰富的函数和算法,涵盖了从数据预处理到模型训练的全过程。可以轻松地导入和处理大规模数据集,利用批量导入和Datastore类函数高效地进行 继续阅读

神经网络与深度学习:基于TensorFlow框架和Python技术实现

编程书籍推荐:神经网络与深度学习:基于TensorFlow框架和Python技术实现,由电子工业出版社2019-04-01月出版,本书发行作者信息: 包子阳 著此次为第1次发行, 国际标准书号为:9787121362019,品牌为电子工业出版社, 这本书采用平装开本为16开,附件信息:未知,纸张采为胶版纸,全书共有196页字数28万 0000字,值得推荐的Python Book。此书内容摘要Python、TensorFlow、神经网络和深度学习因人工智能的流行而成为当下I 继续阅读

【深度学习】5-3 与学习相关的技巧 - Batch Normalization

如果为了使各层拥有适当的广度,“强制性”地调整激活值的分布会怎样呢?实际上,Batch Normalization 方法就是基于这个想法而产生的 为什么Batch Norm这么惹人注目呢?因为Batch Norm有以下优点: 可以使学习快速进行(可以增大学习率)。不那么依赖初始值(对于初始值不用那么神经质) 。抑制过拟合(降低Dropout等的必要性)。 Batch Norm的思路是调整各层的激活值分布使其拥有适当的广度。为此&#xf 继续阅读

【深度学习】5-4 与学习相关的技巧 - 正则化解决过拟合(权值衰减,Dropout)

机器学习的问题中,过拟合是一个很常见的问题。过拟合指的是只能拟合训练数据,但不能很好地拟合不包含在训练数据中的其他数据的状态。机器学习的目标是提高泛化能力,即便是没有包含在训练数据里的未观测数据也希望模型可以进行正确的识别。 发生过拟合的原因,主要有以下两个: 模型拥有大量参数、表现力强。训练数据少。 那么如何来抑制过拟合 正则化是有效方法之一,它不仅可以有效降低高方差,还有利于降低偏差。何为 继续阅读