python对csv文件聚类分析,python csv数据分析

本文目录一览:

开启数据分析的大门-数据收集:Python对文件的操作

简介

我是一名应届经济学毕业生,在学习Python语言的过程中,接触到了数据分析,机器学习和人工智能,并对此特别感兴趣,现在我把整个学习过程记录下来,希望和我有相同兴趣和爱好的朋友们一同成长,期盼着各位专家的指导。

环境介绍

在整个过程当中,将采用Python和Excel,采用Python,是因为Python提供了丰富的开发框架和工具库,使用Excel是因为Excel是使用非常广泛的办公软件,我在Excel里将复杂的算法简单化,使大家快速理解各种难以理解的算法。

在开始之前,我们已经准备好了Anaconda和Excel环境。在这里省略了这个过程。

数据获取将通过tushare开放平台,后面我会介绍和演示如何应用tushare平台。

数据分析流程简介

数据分析是由数据收集开始,收集的数据经过标准化处理和整理后,通过各种算法,进行数据分析,目的是为了总结过去的 历史 数据,在数据趋势上预测未来的走势,同时对现存的环境进行优化。

我们今天先从数据收集开始。

数据收集需要应用到Python对文件的读写操作。

下面这段代码以只读方式采用’UTF-8’编码方式打开当前目录下的text1.txt文件,并输出到屏幕上。操作完毕后,关闭文件。

小贴士:在从tushare平台获取数据时,每个用户会分配到一个key,我们可以把这个key封装到这个文件里。为的是数据安全和便利性。

Python对数据的处理主要是csv文件格式,Excel和数据库。今天我们主要针对csv文件进行操作。为的是尽快开始我们的数据分析之旅。后面在适当的时候,我来完成对Excel和数据库的操作。

Python 读取csv文件有很多种方法,我们这里采用PANDAS库,下面是读取csv文件代码:

下面这段代码先生成数据列表,然后写入csv文件。

好了,到现在为止,Python对数据收集的基础工作就算完成了,Python对文件操作有很多技巧,不是我们这一系列的重点,就不一一介绍了,有兴趣的伙伴可以查阅相关文档。

数据分析员用python做数据分析是怎么回事,需要用到python中的那些内容,具体是怎么操作的?

最近,Analysis with Programming加入了Planet Python。我这里来分享一下如何通过Python来开始数据分析。具体内容如下:

数据导入

导入本地的或者web端的CSV文件;

数据变换;

数据统计描述;

假设检验

单样本t检验;

可视化;

创建自定义函数。

数据导入

1

这是很关键的一步,为了后续的分析我们首先需要导入数据。通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式。在Python中,我们的操作如下:

import pandas as pd

# Reading data locally

df = pd.read_csv('/Users/al-ahmadgaidasaad/Documents/d.csv')

# Reading data from web

data_url = ""

df = pd.read_csv(data_url)

为了读取本地CSV文件,我们需要pandas这个数据分析库中的相应模块。其中的read_csv函数能够读取本地和web数据。

END

数据变换

1

既然在工作空间有了数据,接下来就是数据变换。统计学家和科学家们通常会在这一步移除分析中的非必要数据。我们先看看数据(下图)

对R语言程序员来说,上述操作等价于通过print(head(df))来打印数据的前6行,以及通过print(tail(df))来打印数据的后6行。当然Python中,默认打印是5行,而R则是6行。因此R的代码head(df, n = 10),在Python中就是df.head(n = 10),打印数据尾部也是同样道理

请点击输入图片描述

2

在R语言中,数据列和行的名字通过colnames和rownames来分别进行提取。在Python中,我们则使用columns和index属性来提取,如下:

# Extracting column names

print df.columns

# OUTPUT

Index([u'Abra', u'Apayao', u'Benguet', u'Ifugao', u'Kalinga'], dtype='object')

# Extracting row names or the index

print df.index

# OUTPUT

Int64Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], dtype='int64')

3

数据转置使用T方法,

# Transpose data

print df.T

# OUTPUT

0      1     2      3     4      5     6      7     8      9

Abra      1243   4158  1787  17152  1266   5576   927  21540  1039   5424

Apayao    2934   9235  1922  14501  2385   7452  1099  17038  1382  10588

Benguet    148   4287  1955   3536  2530    771  2796   2463  2592   1064

Ifugao    3300   8063  1074  19607  3315  13134  5134  14226  6842  13828

Kalinga  10553  35257  4544  31687  8520  28252  3106  36238  4973  40140

...       69     70     71     72     73     74     75     76     77

Abra     ...    12763   2470  59094   6209  13316   2505  60303   6311  13345

Apayao   ...    37625  19532  35126   6335  38613  20878  40065   6756  38902

Benguet  ...     2354   4045   5987   3530   2585   3519   7062   3561   2583

Ifugao   ...     9838  17125  18940  15560   7746  19737  19422  15910  11096

Kalinga  ...    65782  15279  52437  24385  66148  16513  61808  23349  68663

78

Abra      2623

Apayao   18264

Benguet   3745

Ifugao   16787

Kalinga  16900

Other transformations such as sort can be done using codesort/code attribute. Now let's extract a specific column. In Python, we do it using either codeiloc/code or codeix/code attributes, but codeix/code is more robust and thus I prefer it. Assuming we want the head of the first column of the data, we have

4

其他变换,例如排序就是用sort属性。现在我们提取特定的某列数据。Python中,可以使用iloc或者ix属性。但是我更喜欢用ix,因为它更稳定一些。假设我们需数据第一列的前5行,我们有:

print df.ix[:, 0].head()

# OUTPUT 0     1243 1     4158 2     1787 3    17152 4     1266 Name: Abra, dtype: int64

5

顺便提一下,Python的索引是从0开始而非1。为了取出从11到20行的前3列数据,我们有

print df.ix[10:20, 0:3]

# OUTPUT

Abra  Apayao  Benguet

10    981    1311     2560

11  27366   15093     3039

12   1100    1701     2382

13   7212   11001     1088

14   1048    1427     2847

15  25679   15661     2942

16   1055    2191     2119

17   5437    6461      734

18   1029    1183     2302

19  23710   12222     2598

20   1091    2343     2654

上述命令相当于df.ix[10:20, ['Abra', 'Apayao', 'Benguet']]。

6

为了舍弃数据中的列,这里是列1(Apayao)和列2(Benguet),我们使用drop属性,如下:

print df.drop(df.columns[[1, 2]], axis = 1).head()

# OUTPUT

Abra  Ifugao  Kalinga

0   1243    3300    10553

1   4158    8063    35257

2   1787    1074     4544

3  17152   19607    31687

4   1266    3315     8520

axis 参数告诉函数到底舍弃列还是行。如果axis等于0,那么就舍弃行。

END

统计描述

1

下一步就是通过describe属性,对数据的统计特性进行描述:

print df.describe()

# OUTPUT

Abra        Apayao      Benguet        Ifugao       Kalinga

count     79.000000     79.000000    79.000000     79.000000     79.000000

mean   12874.379747  16860.645570  3237.392405  12414.620253  30446.417722

std    16746.466945  15448.153794  1588.536429   5034.282019  22245.707692

min      927.000000    401.000000   148.000000   1074.000000   2346.000000

25%     1524.000000   3435.500000  2328.000000   8205.000000   8601.500000

50%     5790.000000  10588.000000  3202.000000  13044.000000  24494.000000

75%    13330.500000  33289.000000  3918.500000  16099.500000  52510.500000

max    60303.000000  54625.000000  8813.000000  21031.000000  68663.000000

END

假设检验

1

Python有一个很好的统计推断包。那就是scipy里面的stats。ttest_1samp实现了单样本t检验。因此,如果我们想检验数据Abra列的稻谷产量均值,通过零假设,这里我们假定总体稻谷产量均值为15000,我们有:

from scipy import stats as ss

# Perform one sample t-test using 1500 as the true mean

print ss.ttest_1samp(a = df.ix[:, 'Abra'], popmean = 15000)

# OUTPUT

(-1.1281738488299586, 0.26270472069109496)

返回下述值组成的元祖:

t : 浮点或数组类型t统计量

prob : 浮点或数组类型two-tailed p-value 双侧概率值

2

通过上面的输出,看到p值是0.267远大于α等于0.05,因此没有充分的证据说平均稻谷产量不是150000。将这个检验应用到所有的变量,同样假设均值为15000,我们有:

print ss.ttest_1samp(a = df, popmean = 15000)

# OUTPUT

(array([ -1.12817385,   1.07053437, -65.81425599,  -4.564575  ,   6.17156198]),

array([  2.62704721e-01,   2.87680340e-01,   4.15643528e-70,

1.83764399e-05,   2.82461897e-08]))

第一个数组是t统计量,第二个数组则是相应的p值

END

可视化

1

Python中有许多可视化模块,最流行的当属matpalotlib库。稍加提及,我们也可选择bokeh和seaborn模块。之前的博文中,我已经说明了matplotlib库中的盒须图模块功能。

请点击输入图片描述

2

# Import the module for plotting

import matplotlib.pyplot as plt

plt.show(df.plot(kind = 'box'))

现在,我们可以用pandas模块中集成R的ggplot主题来美化图表。要使用ggplot,我们只需要在上述代码中多加一行,

import matplotlib.pyplot as plt

pd.options.display.mpl_style = 'default' # Sets the plotting display theme to ggplot2

df.plot(kind = 'box')

3

这样我们就得到如下图表:

请点击输入图片描述

4

比matplotlib.pyplot主题简洁太多。但是在本文中,我更愿意引入seaborn模块,该模块是一个统计数据可视化库。因此我们有:

# Import the seaborn library

import seaborn as sns

# Do the boxplot

plt.show(sns.boxplot(df, widths = 0.5, color = "pastel"))

请点击输入图片描述

5

多性感的盒式图,继续往下看。

请点击输入图片描述

6

plt.show(sns.violinplot(df, widths = 0.5, color = "pastel"))

请点击输入图片描述

7

plt.show(sns.distplot(df.ix[:,2], rug = True, bins = 15))

请点击输入图片描述

8

with sns.axes_style("white"):

plt.show(sns.jointplot(df.ix[:,1], df.ix[:,2], kind = "kde"))

请点击输入图片描述

9

plt.show(sns.lmplot("Benguet", "Ifugao", df))

END

创建自定义函数

在Python中,我们使用def函数来实现一个自定义函数。例如,如果我们要定义一个两数相加的函数,如下即可:

def add_2int(x, y):

return x + y

print add_2int(2, 2)

# OUTPUT

4

顺便说一下,Python中的缩进是很重要的。通过缩进来定义函数作用域,就像在R语言中使用大括号{…}一样。这有一个我们之前博文的例子:

产生10个正态分布样本,其中和

基于95%的置信度,计算和 ;

重复100次; 然后

计算出置信区间包含真实均值的百分比

Python中,程序如下:

import numpy as np

import scipy.stats as ss

def case(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):

m = np.zeros((rep, 4))

for i in range(rep):

norm = np.random.normal(loc = mu, scale = sigma, size = n)

xbar = np.mean(norm)

low = xbar - ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

up = xbar + ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

if (mu low) (mu up):

rem = 1

else:

rem = 0

m[i, :] = [xbar, low, up, rem]

inside = np.sum(m[:, 3])

per = inside / rep

desc = "There are " + str(inside) + " confidence intervals that contain "

"the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"

return {"Matrix": m, "Decision": desc}

上述代码读起来很简单,但是循环的时候就很慢了。下面针对上述代码进行了改进,这多亏了 Python专家

import numpy as np

import scipy.stats as ss

def case2(n = 10, mu = 3, sigma = np.sqrt(5), p = 0.025, rep = 100):

scaled_crit = ss.norm.ppf(q = 1 - p) * (sigma / np.sqrt(n))

norm = np.random.normal(loc = mu, scale = sigma, size = (rep, n))

xbar = norm.mean(1)

low = xbar - scaled_crit

up = xbar + scaled_crit

rem = (mu low) (mu up)

m = np.c_[xbar, low, up, rem]

inside = np.sum(m[:, 3])

per = inside / rep

desc = "There are " + str(inside) + " confidence intervals that contain "

"the true mean (" + str(mu) + "), that is " + str(per) + " percent of the total CIs"

return {"Matrix": m, "Decision": desc}

Python csv库整理(部分)

近期,笔者到一些数据竞赛网站进行观察学习,发现很多数据是以csv文件处理的(废话).因而,磨刀不误砍柴工,笔者先对Python的csv库进行学习.

csv模块实现了CSV格式表单数据的读写.这可以以一个兼容Excel的方式读写其数据文件,csv模块中的reader和writer类被用来读写序列化的数据.也可以使用DictReader类和DictWriter类以字典的方式读取数据.

返回一个reader对象,该对象逐行遍历csvfile(文件和列表均适用,但是文件的话应该newline=''.

默认每一行读取一个字符串组成的列表(而非数值,除非修改QUOTE_NONUMERIC).

返回一个writer对象,负责将数据在给定的文件类对象上转换成带分隔符的字符串.csvfile(只要该对象有write()方法,文件的话应该newline=''.)

这两个方法可以把name字符串和dialect关联/脱钩.dialect可以是Dialect的子类,或者fmtparams的关键字参数.

返回一个Dialect对象为name的变种,若其未注册,抛出Error.

返回已经注册的所有变种的 名称

返回当前解析器允许的最大字段大小,如果制定了参数,参数将成为新的最大字段大小.

该对象操作上类似reader,但是把每行中的信息映射到一个字典,字典的键由fieldnames给出

fieldname的参数是一个序列sequence [1] ,如果参数缺省,默认第一行的值作为字段名.

如果某一行中的字段多于字段名(比如说约定有5项属性,但是这一行却出现了6个数据),则其余字段将放入列表中,字段名由 restkey 指定(默认为 None)。如果非空白行的字段少于字段名,则缺少的值将用 None 填充。

#其实这玩意应该就跟各种填表里面的备注用法差不多.

3.8中返回的行是dict类型.

该对象操作上类似reader,但是把每行中的信息映射到一个字典,字典的键由fieldnames给出,fieldname参数是不可缺省的.restval用来指定字典缺少键的时候要写入的值.extrasaction用于指定关键键在fieldname中找不到的情况的处理机制.'raise'引发ValueError,而'ignore'则会被忽略.

这个类被用来瑞段csv文件的格式

以下诸类均在括号中标注了在其变种注册表中的名称

定义了Excel生成的csv文件的常规属性.('excel')

定义了Excel生成的,tab分割的csv文件的常规属

性.('excel-tab')

定义了UNIX系统上生成的csv文件的常规属性('unix'):

任意可能发生的csv库函数错误.

参考链接

Python3.8.2文档中关于csv库的相关文档

python中怎么处理csv文件

什么是CSV

就是内容用逗号隔开,后缀是‘.csv’的文件。它可以被任何一个文本编辑器打开。如果用excel打开,它又可以是这样的:

END

读CSV

典型的可处理的csv文件,通常含有表头,也就是每列的列名。这样一来,每一行的内容就可以被当作是以表头为key的字典。于是可以使用csv定义的类:

class csv.DictReader(csvfile, fieldnames=None, restkey=None, restval=None, dialect='excel', *args, **kwds)

下面是官方的例子(Python 3)。我们看到,对于csv文件的内容,我们可以通过相应的tag,也就是字典的key来读取。

在实际使用过程中,为了分离代码和方便阅读,可以先把读取的内容转存到列表,随后再根据各个key进行分开处理(针对多列的情况)。

END

写CSV

同样的,写入的也是列表。使用的类:

class csv.DictWriter(csvfile, fieldnames, restval='', extrasaction='raise', dialect='excel', *args, **kwds)

官方例子:我们看到,有专门的函数来写入表头,没有表头数据是无法对应的。需要注意的是,对于下列语句,‘w’需要修改为‘wb’,否则每次写入会有多余空行

with open('names.csv', 'wb') as csvfile

python分析csv文件

import csv

suburbs_average = {}

suburbs_count = {}

group_suburb = {}

csvfile = open("ps1_3_data.csv")

csv_reader = csv.reader(csvfile, delimiter=',')

for row in csv_reader:

   suburbs=row[0]

   travel_time=row[1]

   if suburbs in group_suburb.keys():

    suburbs_count[suburbs] += 1

    group_suburb[suburbs] += int(travel_time)

   else:

    suburbs_count[suburbs] = 1

    group_suburb[suburbs] = int(travel_time)

for key in group_suburb.keys():

suburbs_average[key]=group_suburb[key]/suburbs_count[key]

print (suburbs_average)

python对csv文件进行数据处理与统计

如果是这样,把数据表弄到word中,看看数据左右是否有空格,如果有,就用“居中”罚礌窜啡诃独撮扫郸激处理,把空格去掉,再粘贴回Excel即可进行计算了。

在Excel中处理文本类型的数据,还真的有些无奈呢。

本文链接:https://my.lmcjl.com/post/18905.html

展开阅读全文

4 评论

留下您的评论.