C语言 八大排序算法的过程图解及实现代码

目录
  • 前言
  • 一、插入排序
    • 时间复杂度
    • 空间复杂度
    • 代码实现(升序)
  • 二、希尔排序
    • 时间复杂度
    • 空间复杂度
    • 代码实现
  • 三、选择排序
    • 时间复杂度
    • 空间复杂度
    • 代码实现
  • 四、堆排序
    • 时间复杂度
    • 空间复杂度
    • 代码实现
  • 五、冒泡排序
    • 时间复杂度
    • 空间复杂度
    • 代码实现
  • 六、快排排序
    • 时间复杂度
    • 空间复杂度
    • 代码实现
  • 七、归并排序
    • 时间复杂度
    • 空间复杂度
    • 代码实现
  • 八、计数排序
    • 时间复杂度
    • 空间复杂度
  • 九、各种排序总结比较

前言

排序是数据结构中很重要的一章,先介绍几个基本概念。

  • 排序稳定性:多个具有相同的关键字的记录,若经过排序,这些记录的相对次
  • 序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
  • 内部排序:数据元素全部放在内存中的排序。
  • 外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。

一、插入排序

时间复杂度

最坏:-----------o(n^2)

最好:-----------o(n)

平均:-----------o(n^2)

空间复杂度

o(1)

稳定性:稳定

-『 插入排序 』:顾名思义就是把每一个数插入到有序数组中对应的位置。

就相当于你玩扑克牌的过程,抓来一张牌,就放在对应有序位置

直接插入排序:

当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i-1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移

代码实现(升序)

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

void insertsort(int* a, int n)

{

for (int i = 0; i < n - 1; i++)

{

int x = a[end+1];//x为待排序的值

int end = i;//从end开始往前和x依次比较

while (end >= 0)

{

if (a[end] > x)//只要当前的值大于x继续往前找

{

a[end+1] = a[end];

end--;

}

else

{

break;//跳出循环说明a[end] <= x

}

}

a[end + 1] = x;//跳出循环说明a[end] <= x,需要把x插入到end前边

}

}

那么我们可以看到,越是接近有序的数组,插入排序的效率越高(有序时对于任何一个数只需要和前边的数比较一次)。

二、希尔排序

时间复杂度

o(n^(1.3—2))

空间复杂度

o(1)

稳定性:稳定

『 希尔排序 』(shell's sort)是插入排序的一种又称“缩小增量排序”(diminishing increment sort),是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因 d.l.shell 于 1959 年提出而得名。

该方法实质上是一种『 分组插入 』方法,因为插入排序对于接近有序的数组排序效率非常高,那么希尔提出:

算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行分组,在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。

一般的初次取序列的一半为增量,以后每次减半,直到增量为1。

并且插入排序可以看成分组是1的希尔排序。动图如下:

因为插入排序可以看做gap==1的希尔排序,因此只需要改变插入排序中for循环的增量控制排序即可。

代码实现

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

void shellsort(int* a, int n)

{

//按gap分组进行预排序

int gap = n;

while (gap>1)

{

//gap = gap / 2;

gap = gap / 3 + 1;//这里分组选每次折半或者/3都可以

for (int j = 0; j < gap; j++)//gap个组

for (int i = j; i < n - gap; i+=gap)//每个组从j开始每个增量gap

{

int end = i;

int x = a[end + gap];

while (end >= 0)

{

if (a[end] > x)

{

a[end + gap] = a[end];

end -= gap;

}

else

{

break;

}

}

a[end + gap] = x;

}

}

}

关于希尔排序时间复杂度证明比较复杂,取决于gap怎么取,如果按照knuth提出的/3,来取是o(n^(1.25)- 1.6*o(n^1.25).

希尔排序的特性总结:

  1. 希尔排序是对直接插入排序的优化。
  2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
  3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定

三、选择排序

时间复杂度

最坏:-----------o(n^2)

最好:-----------o(n^2)

平均:-----------o(n^2)

空间复杂度

o(1)

稳定性:不稳定

『 基本思想 』:

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始(末尾)位置,直到全部待排序的数据元素排完 。如图:

代码实现

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

void selectsort(int* a, int n)

{

int begin = 0;

int end = n - 1;

int mini = begin;//记录最小值下标

while (begin<end)

{

for (int i = begin; i < end; i++)

{

if (a[i] < a[mini])

{

mini = i;//更新最小值下标

}

}

swap(&a[mini],&a[begin]);//把最小值放到左边

++begin;//左边对应起始位置++

}

}

直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用。

四、堆排序

时间复杂度

最坏:-----------o(n * logn)

最坏:-----------o(n * logn)

平均:-----------o(n*logn)

空间复杂度

o(1)

堆排序(heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆。

具体可见另一篇文章堆排序和topk问题

动图:

代码实现

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

void swap(int* px,int* py)

{

int t = (*px);

(*px) = (*py);

(*py)= t ;

}

void adjustdown(int* a, int n, int parent)

{

int child = parent * 2 + 1;

while (child < n)

{

if (child + 1 < n && a[child + 1] > a[child])

{

child++;

}

if (a[child] > a[parent])

{

swap(&a[child], &a[parent]);

parent = child;

child = parent * 2 + 1;

}

else

{

break;

}

}

}

void heapsort(int* a, int n)

{

for (int i = (n - 1 - 1) / 2; i >= 0; i--)

{

adjustdown(a, n, i);

}

for (int i = n - 1; i > 0; i--)

{

swap(&a[0], &a[i]);

adjustdown(a, i, 0);

}

}

五、冒泡排序

时间复杂度

最坏:-----------o(n^2)

最好:-----------o(n)

平均:-----------o(n^2)

空间复杂度

o(1)

『 冒泡排序 』是大家最熟悉的也是最容易理解的排序,如下图:

『 冒泡排序基本思想 』就是每一次将相邻的数据进行『 两两比较 』,选出最大的依次比较送到右边,那么最右边就是最大值,而左边留下的自然就是小的(排升序)

-『 冒泡排序 』需要两层循环

『 内层循环 』表示一次冒泡,也就是两两比较先选出最大的放到最右边,同时注意每一次冒泡选出最大元素,那么两两比较次数-1(下一次不用比较选好的最右边)

『 外层循环 』控制的是冒泡的次数(假设数组n 个元素)也就是n-1次冒泡选出n-1个最大的元素

代码实现

初版代码如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

//初版:

void swap(int* px, int* py)

{

int t = (*px);

*px = (*py);

(*py) = t;

}

void bubblesort(int* a, int n)

{

for (int i = 0; i < n-1; i++)//外层循环

{

for (int j = 0; j < n-1-i; j++)

{

if(a[j]>a[j+1])

swap(&a[j],& a[j + 1]);//交换

flag = 1;

}

}

}

时间复杂度分析:每一次比较次数是n-1,n-2,n-3***1.因此是n(n-1)/2

但是这种写法还是有缺陷,时间复杂度永远是o(n^2) , 对于一个已经排好序的数组来说,还是需要n^2的复杂度,但对于有序的数组,每一次冒泡都不会进行交换因为有序,因此如果只要任何一次冒泡中没有数据交换就证明数组有序了。时间复杂度最好也可以达到0(n)。

代码优化如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

//优化:

void bubblesort(int* a, int n)

{

for (int i = 0; i < n-1; i++)

{

int flag = 0;

for (int j = 0; j < n-1-i; j++)

{

if(a[j]>a[j+1])

swap(&a[j],& a[j + 1]);

flag = 1;

}

if (flag == 0)

break;

}

}

六、快排排序

时间复杂度

最坏:-----------o(n^2)

最好:-----------o(logn)

平均:-----------o(logn)

空间复杂度

o(logn)

『 快速排序 』是hoare于1962年提出的一种二叉树结构的交换排序方法,其『 基本思想 』为:任取待排序元素序列中的某元素作为『 基准值 』,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。如图:

代码实现

递归写法:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

// 假设按照升序对a数组中[left, right)区间中的元素进行排序

void quicksort(int* a, int left, int right) {

if(right >= left )

return;//递归截止条件

// 按照基准值对a数组的 [left, right]区间中的元素进行划分

int keyi= partion(a, left, right);

// 划分成功后以keyi为边界形成了左右两部分 [left, keyi-1] 和 [keyi+1, right]

// 递归排[left, keyi-1]

quicksort(a, left, keyi-1);

// 递归排[keyi+1, right]

quicksort(a, keyi+1, right);

}

递归框架写完了接下来就差partion函数的实现也就是快排的灵魂,去每一次找基准值。那么一共有三种写法如下:

hoare版本

1.首先就是要找基准值,这里你可以选最左边或最右边的值(图中是6)

2.两个指针指向头(这里选左为基准值,头指针指向第二个)和尾,基准值选左,则右指针先走,反之左指针先走。

3.左指针找到比基准值大的停下,右指针找比基准值小的停下,交换左右指针指向值

4.重复2.3动作,直到左右指针相遇,交换左指针值和基准值

左值为基准,右指针先走找比6小的:

左值为基准,右指针先走找比6小的:

交换:

最终效果:相遇交换左指针和基准值,保证了6的左边都比6小,右边比6大。

并且除此之外,由于我们看到这种算法类似于二叉树的思想排好中间再排左右子树,因此我要保证选取的随机值尽量位与中位数。所以我们采取三数取中的方法。(选取最左值最右最中间的数的中位数)效率是可以提升5%到10%的。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

//三数取中

int getmidindex(int* a, int left, int right)

{

//int mid = (left + right) / 2;

//int mid = left + (right - left) / 2;

int mid = left + ((right - left)>>1);

if (a[left] < a[mid])

{

if (a[mid] < a[right])

{

return mid;

}

else if (a[left] > a[right])

{

return left;

}

else

{

return right;

}

}

else//a[left] > a[mid]

{

if (a[mid] > a[right])

{

return mid;

}

else if (a[left] < a[right])

{

return left;

}

else

{

return right;

}

}

}

int partion(int* a, int left,int right)

{

int mini = getmidindex(a, left, right);

swap(&a[mini], &a[left]);

int keyi = left;

while (left < right)

{

while (left < right && a[right] >= a[keyi])

{

right--;

}

while (left < right && a[left] <= a[keyi])

{

left++;

}

swap(&a[left], &a[right]);

}swap(&a[left], &a[keyi]);

return left;

}

挖坑法

挖坑法就是对hoare版本的一种变形,过程如下:

初始如下:先保存基准值,基准值形成一个坑位!

左为基准,右指针先走,找到小的送到坑位,那么此刻右指针形成了新的坑位

左指针出动,找到大的继续送到坑位,左指针形成了新的坑位

指针相遇,把6写入。也保证左边比6小,右边比6大。代码如下:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

//挖坑法

int partion2(int* a, int left, int right)

{

int mini = getmidindex(a, left, right);

swap(&a[mini], &a[left]);

int key = a[left];

int pivot = left;

while (left < right)

{

//右边先找小

while (left< right && a[right] >= key)

{

--right;

}

a[pivot] = a[right];

pivot = right;

while (left < right && a[left] <= key)

{

++left;

}

a[pivot] = a[left];

pivot = left;

}

a[pivot] = key;

return pivot;

}

前后指针版本

顾名思义,使用两个指针,这里选取左为基准值为例,两个指针从左开始出发一个cur,一个prev。

要求:

cur指针先走,一旦找到比基准值小的就停下,++prev,并交换。

cur指针一直到头为止,最后交换prev指向值和基准值

1和2都比6小cur走一步停一步,prev++并交换,指向相等。

cur越过7和9去找小的3,此时停下,prev++指向7交换。(我们注意到prev和cur不等时prev永远是去找大的,cur是找小的,因此交换就做到把cur指向的小的往前扔,大的往后仍,)

整个过程如上,代码:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

//前后指针法

int partion3(int* a, int left, int right)

{

int mini = getmidindex(a, left, right);

swap(&a[mini], &a[left]);

int prev = left, cur = left+1;

int keyi = left;

while (cur<=right)

{

if (a[cur] < a[keyi] && ++prev !=cur)

{

swap(&a[prev], &a[cur]);

}

cur++;

}

swap(&a[prev], &a[keyi]);

return prev;

}

小结

递归版本三种方法如上,但是递归毕竟有缺陷,就是需要不断开辟栈帧,当数据量超过10w以上时就会有栈溢出的风险。

并且递归类似二叉树的结构越往下递归调用越多,栈帧翻倍开辟,因此我们还可以去优化一下,就是当递归到左右区间比较小时,我们去控制剩下的排序用别的排序来代替它。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

//优化:

void quicksort(int* a, int left, int right)

{

if (left >= right)

return;

if (right - left + 1 < 10)

{

//小区间优化

insertsort(a + left , right - left + 1);

}

else

{

int keyi = partion3(a, left, right);

quicksort(a, left, keyi - 1);

quicksort(a, keyi + 1, right);

}

}

非递归:

非递归版本就是改变了快排的框架,用一个栈和循环来代替递归实现。依次将左右下标入栈出栈(出栈之前排序)来模拟递归。

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

void quicksortnonr(int* a, int left, int right)

{

stack st;//定义一个栈

stackinit(&st);//初始化

stackpush(&st, left);//左下标入栈

stackpush(&st, right);//右下标入栈

while (stackempty(&st)!=0)

{

int end = stacktop(&st);//获取栈顶元素即后入栈的右下标

stackpop(&st);//出栈

int begin = stacktop(&st);//获取栈顶元素即先入栈的左下标

stackpop(&st);//出栈

int keyi = partion3(a, begin, end);

if (keyi + 1 < end)//相当于递归左半部分

{

stackpush(&st, keyi + 1);

stackpush(&st, right);

}

if (keyi - 1 > begin)//相当于递归右半部分

{

stackpush(&st, keyi - 1);

stackpush(&st, begin);

}

}

}

七、归并排序

时间复杂度

最坏:-----------o(nlogn)

最好:-----------o(nlogn)

平均:-----------o(nlogn)

空间复杂度

o(n)

稳定性:稳定

基本思想:

归并排序(merge-sort)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(divide andconquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 动图演示:

归并的思想就是把先假设数组分成两个有序,对其进行筛选排序,如上图:

但是问题来了我们怎么保证数组是有序的?因此就要求我们从小区间开始对数组归并排序,对于上图中的数据,先对开始3和3归并,小的先进入到tmp数组,因此前两个就是有序,再对,5和6归并,5,6有序后,在归并3,3,5,6……以此类推

代码实现

递归写法

框架:

?

1

2

3

4

5

6

7

8

9

10

11

void mergesort(int* a,int n)

{

int* tmp = (int*)malloc(sizeof(int) * n);//开辟n个大小数组

if (tmp == null)

{

exit(-1);

}

_mergesort(a, 0, n - 1, tmp);//进行归并操作

free(tmp);

tmp = null;

}

归并排序:

运用递归先不断缩小偏序区间,在递归层层退出时一遍退出,一边对不断回大的区间归并排序:

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

void _mergesort(int* a, int left, int right,int* tmp)

{

if (left >= right)

{

return;//递归截止条件left >= right区间中数的个数<=0个

}

int mid = left + (right - left) / 2;//取中

_mergesort(a, left, mid, tmp);//对左区间递归

_mergesort(a, mid+1, right, tmp);//对右区间递归

int begin1 = left, end1 = mid;//左区间

int begin2 = mid+1, end2 = right;//右区间

int i = left;

while (begin1 <= end1 && begin2 <= end2)

{

if (a[begin1] < a[begin2])

{

tmp[i++] = a[begin1++];

}

else

{

tmp[i++] = a[begin2++];

}

}

while (begin1 <= end1 )

{

tmp[i++] = a[begin1++];

}

while (begin2 <= end2)

{

tmp[i++] = a[begin2++];

}

for (size_t i = left; i <= right; i++)

{

a[i] = tmp[i];//把排好序[left,right]的tmp赋值给原数组

}

}

非递归

非递归的不同就是需要手动控制区间大小,也就是不断2倍扩大区间归并。

但是还需要注意就是当下标是奇数,无法分成整数个组的时候,需要考虑剩余的数,以及是否越界的问题

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

void mergesortnonr(int* a, int n)

{

int* tmp = (int*)malloc(sizeof(int) * n);

if (tmp == null)

{

exit(-1);

}

int gap = 1;

while (gap < n)

{

for (int i = 0; i < n; i += 2 * gap)

{

//[i][i+gap-1] [i+gap][i+2*gap-1]

int begin1 = i, end1 = i + gap-1;

int begin2 = i + gap, end2 = i + 2 * gap - 1;

int index = i;

if (end1 >= n || begin2 >= n)

{

break;

}

if (end2 >= n)

{

end2 = n - 1;

}

while (begin1<=end1 && begin2<=end2)

{

if (a[begin1] <= a[begin2])

{

tmp[index++] = a[begin1++];

}

else

{

tmp[index++] = a[begin2++];

}

}

while (begin1 <= end1)

{

tmp[index++] = a[begin1++];

}

while (begin2 <= end2)

{

tmp[index++] = a[begin2++];

}

//控制越界问题三种情况

if (end1 >= n)

{

end1 = n - 1;

}

if (end1 >= n)

{

end1 = n - 1;

}

if (end1 >= n)

{

end1 = n - 1;

}

for (int j = i; j <= end2; j++)

{

a[j] = tmp[j];

}

}

gap *= 2;

}

free(tmp);

tmp = null;

}

八、计数排序

时间复杂度

最坏:-----------o(max(n,范围))

最好:-----------o(max(n,范围))

平均:-----------o(max(n,范围))

空间复杂度

o(范围)

稳定性:不稳定

思想:计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。 操作步骤:

  1. 统计相同元素出现次数
  2. 根据统计的结果将序列回收到原来的序列中

动图如下:

类似桶排序的思想,如上图,先开辟数组统计数组中某一个数出现的次数,比如2出现1次,3出现两次,那么我们直接按顺序读入开辟的数组,在原数组写1一个2,两个3以此类推……

?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

void countsort(int* a, int n)

{

int max=a[0], min= a[0];

for (int i = 0; i < n; i++)

{

if (a[i] > max)

{

max = a[i];

}

if (a[i] < min)

{

min = a[i];

}

}

int range = max - min + 1;

int* count = (int*)malloc(sizeof(int) * range);

memset(count, 0, sizeof(int)*range);

for (int i = 0; i < n; i++)

{

count[a[i] - min]++;

}

int j = 0;

for (int i = 0; i < range; i++)

{

while (count[i]--)

{

a[j++] = i + min;

}

}

}

计数排序的特性总结:

计数排序在数据范围集中时,效率很高,但是适用范围及场景有限。

九、各种排序总结比较

1. 复杂度总结

2. 性质分类

以上就是c语言 八大排序算法的过程图解及实现代码的详细内容,更多关于c语言八大排序算法的资料请关注服务器之家其它相关文章!

原文链接:https://blog.csdn.net/weixin_51484780/article/details/121628023

本文链接:https://my.lmcjl.com/post/3165.html

展开阅读全文

4 评论

留下您的评论.