ChatGPT 学术优化
今天给大家推荐一个科研工作者专用的ChatGPT拓展,目前已经是14.5k stars,地址:https://github.com/binary-husky/chatgpt_academic
主要亮点:特别优化学术Paper润色体验,支持自定义快捷按钮,支持markdown表格显示,Tex公式双显示,代码显示功能完善,新增本地Python工程剖析功能/自我剖析功能
代码中参考了很多其他优秀项目中的设计,主要包括:# 借鉴项目1:借鉴了ChuanhuChatGPT中读取OpenAI json的方法、记录历史问询记录的方法以及gradio queue的使用技巧
https://github.com/GaiZhenbiao/ChuanhuChatGPT# 借鉴项目2:借鉴了mdtex2html中公式处理的方法
https://github.com/polarwinkel/mdtex2html项目使用OpenAI的gpt-3.5-turbo模型,期待gpt-4早点放宽门槛😂
功能 | 描述 |
---|---|
一键润色 | 支持一键润色、一键查找论文语法错误 |
一键中英互译 | 一键中英互译 |
一键代码解释 | 可以正确显示代码、解释代码 |
自定义快捷键 | 支持自定义快捷键 |
配置代理服务器 | 支持配置代理服务器 |
模块化设计 | 支持自定义高阶的实验性功能 |
自我程序剖析 | [实验性功能] 一键读懂本项目的源代码 |
程序剖析 | [实验性功能] 一键可以剖析其他Python/C++项目 |
读论文 | [实验性功能] 一键解读latex论文全文并生成摘要 |
批量注释生成 | [实验性功能] 一键批量生成函数注释 |
chat分析报告生成 | [实验性功能] 运行后自动生成总结汇报 |
公式显示 | 可以同时显示公式的tex形式和渲染形式 |
图片显示 | 可以在markdown中显示图片 |
支持GPT输出的markdown表格 | 可以输出支持GPT的markdown表格 |
…… | …… |
- 新界面
- 所有按钮都通过读取functional.py动态生成,可随意加自定义功能,解放粘贴板
- 润色/纠错
- 支持GPT输出的markdown表格
- 如果输出包含公式,会同时以tex形式和渲染形式显示,方便复制和阅读
- 懒得看项目代码?整个工程直接给chatgpt炫嘴里
小伙伴们如果觉得有用的话点个赞吧~谢谢啦
直接运行 (Windows, Linux or MacOS)
1. 下载项目
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
2. 配置API_KEY和代理设置
我们建议将config.py
复制为config_private.py
并将后者用作个性化配置文件以避免config.py
中的变更影响你的使用或不小心将包含你的OpenAI API KEY的config.py
提交至本项目。
在config.py
或config_private.py
中,配置 海外Proxy 和 OpenAI API KEY,说明如下
1. 如果你在国内,需要设置海外代理才能够顺利使用 OpenAI API,设置方法请仔细阅读config.py。
2. 配置 OpenAI API KEY。你需要在 OpenAI 官网上注册并获取 API KEY。一旦你拿到了 API KEY,在 config.py 文件里配置好即可。
3. 与代理网络有关的issue(网络超时、代理不起作用)汇总到 https://github.com/binary-husky/chatgpt_academic/issues/1
3. 安装依赖
# (选择一)推荐
python -m pip install -r requirements.txt # (选择二)如果您使用anaconda,步骤也是类似的:
# (选择二.1)conda create -n gptac_venv python=3.11
# (选择二.2)conda activate gptac_venv
# (选择二.3)python -m pip install -r requirements.txt# 备注:使用官方pip源或者阿里pip源,其他pip源(如清华pip)有可能出问题,临时换源方法:
# python -m pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/
4. 运行
python main.py
5. 测试实验性功能
- 测试C++项目头文件分析input区域 输入 `./crazy_functions/test_project/cpp/libJPG` , 然后点击 "[实验] 解析整个C++项目(input输入项目根路径)"
- 测试给Latex项目写摘要input区域 输入 `./crazy_functions/test_project/latex/attention` , 然后点击 "[实验] 读tex论文写摘要(input输入项目根路径)"
- 测试Python项目分析input区域 输入 `./crazy_functions/test_project/python/dqn` , 然后点击 "[实验] 解析整个py项目(input输入项目根路径)"
- 测试自我代码解读点击 "[实验] 请解析并解构此项目本身"
- 测试实验功能模板函数(要求gpt回答历史上的今天发生了什么),您可以根据此函数为模板,实现更复杂的功能点击 "[实验] 实验功能函数模板"
使用docker (Linux)
# 下载项目
git clone https://github.com/binary-husky/chatgpt_academic.git
cd chatgpt_academic
# 配置 海外Proxy 和 OpenAI API KEY
config.py
# 安装
docker build -t gpt-academic .
# 运行
docker run --rm -it --net=host gpt-academic# 测试实验性功能
## 测试自我代码解读
点击 "[实验] 请解析并解构此项目本身"
## 测试实验功能模板函数(要求gpt回答历史上的今天发生了什么),您可以根据此函数为模板,实现更复杂的功能
点击 "[实验] 实验功能函数模板"
##(请注意在docker中运行时,需要额外注意程序的文件访问权限问题)
## 测试C++项目头文件分析
input区域 输入 ./crazy_functions/test_project/cpp/libJPG , 然后点击 "[实验] 解析整个C++项目(input输入项目根路径)"
## 测试给Latex项目写摘要
input区域 输入 ./crazy_functions/test_project/latex/attention , 然后点击 "[实验] 读tex论文写摘要(input输入项目根路径)"
## 测试Python项目分析
input区域 输入 ./crazy_functions/test_project/python/dqn , 然后点击 "[实验] 解析整个py项目(input输入项目根路径)"
其他部署方式
-
使用WSL2(Windows Subsystem for Linux 子系统)
请访问部署wiki-1 -
nginx远程部署
请访问部署wiki-2
自定义新的便捷按钮(学术快捷键自定义)
打开functional.py,添加条目如下,然后重启程序即可。(如果按钮已经添加成功并可见,那么前缀、后缀都支持热修改,无需重启程序即可生效。)
例如
"超级英译中": {# 前缀,会被加在你的输入之前。例如,用来描述你的要求,例如翻译、解释代码、润色等等"Prefix": "请翻译把下面一段内容成中文,然后用一个markdown表格逐一解释文中出现的专有名词:\n\n", # 后缀,会被加在你的输入之后。例如,配合前缀可以把你的输入内容用引号圈起来。"Suffix": "",},
配置代理
在config.py
中修改端口与代理软件对应
配置完成后,你可以用以下命令测试代理是否工作,如果一切正常,下面的代码将输出你的代理服务器所在地:
python check_proxy.py
兼容性测试
图片显示:
如果一个程序能够读懂并剖析自己:
其他任意Python/Cpp项目剖析:
Latex论文一键阅读理解与摘要生成
自动报告生成
模块化功能设计
最后给大家安利我的公众号:洋芋智能,里面会定时更新计算机与人工智能学习干货包含了诸多计算机、人工智能教程、工具、资料等内容,感兴趣的小伙伴可以关注一下~
在公众号后台回复【GPT学术】领取项目源码,有需要的,也可访问下方 GitHub 地址自取:https://github.com/Yangyu-Intell/CS-Learning
本文链接:https://my.lmcjl.com/post/10008.html
4 评论