机器学习:使用OpenCV和Python进行智能图像处理

机器学习:使用OpenCV和Python进行智能图像处理,由机械工业出版社在2018-11-01月出版发行,本书编译以及作者信息为: [美] 迈克尔·贝耶勒(Michael Beyeler) 著,王磊译 译,这是第1次发行, 国际标准书号为:9787111611516,品牌为机工出版, 这本书采用平装开本为16开,纸张采为胶版纸,全书共有251页,字数万字,值得推荐。

此书内容摘要

本书是一本基于OpenCV和Python的机器学习实战手册,既详细介绍机器学习及OpenCV相关的基础知识,又通过具体实例展示如何使用OpenCV和Python实现各种机器学习算法,并提供大量示列代码,可以帮助你掌握机器学习实用技巧,解决各种不同的机器学习和图像处理问题。

全书共12章,第1章简要介绍机器学习基础知识,并讲解如何安装OpenCV和Python工具;第2章展示经典的机器学习处理流程及OpenCV和Python工具的使用;第3章讨论监督学习算法,以及如何使用OpenCV实现这些算法;第4章讨论数据表示和特征工程,并介绍OpenCV中提供的用于处理图像数据的常见特征提取技术;第5章展示如何使用OpenCV构建决策树进行医疗诊断;第6章讨论如何使用OpenCV构建支持向量机检测行人;第7章介绍概率论,并展示如何使用贝叶斯学习实现垃圾邮件过滤;第8章讨论一些非监督学习算法;第9章详细讲解如何构建深度神经网络来识别手写数字;第10章讨论如何高效地集成多个算法来提升性能;第11章讨论如何比较不同分类器的结果,选择合适的工具;第12章给出一些处理实际机器学习问题的提示和技巧。

关于此书作者

Michael Beyeler是华盛顿大学神经工程和数据科学专业的博士后,主攻仿生视觉计算模型,用以为盲人植入人工视网膜(仿生眼睛),改善盲人的视觉体验。 他的工作属于神经科学、计算机工程、计算机视觉和机器学习的交叉领域。他也是2015年Packt出版的《OpenCV with Python Blueprints》一书的作者,该书是构建高级计算机视觉项目的实用指南。同时他也是多个开源项目的积极贡献者,具有Python、C/C++、CUDA、MATLAB和Android的专业编程经验。
他还拥有加利福尼亚大学欧文分校计算机科学专业的博士学位、瑞士苏黎世联邦理工学院生物医学专业的硕士学位和电子工程专业的学士学位。当他不“呆头呆脑” 地研究大脑时,他会攀登雪山、参加现场音乐会或者弹钢琴。

编辑们的推荐

OpenCV是一个综合了经典和先进计算机视觉、机器学习算法的开源库。通过与Python Anaconda版本结合,你就可以获取你所需要的所有开源计算库。
本书首先介绍分类和回归等统计学习的基本概念,然后详细讲解决策树、支持向量机和贝叶斯网络等算法,以及如何把它们与其他OpenCV函数结合,*后还会介绍时下热门主题——深度学习。通过本书的学习,你将掌握大量实用机器学习技巧,并依据书中提供的代码或从零开发自己的算法,解决实际问题。
通过阅读本书,你将:
·学习并高效使用OpenCV的机器学习模块
·使用Python学习用于计算机视觉领域的深度学习技术
·掌握线性回归和归一化技巧
·对花卉品种、手写数字和行人等物体进行分类
·学习支持向量机、提升决策树和随机森林的高效使用方法
·学习使用神经网络和深度学习解决现实问题
·使用k均值聚类发现数据的隐藏结构
·掌握数据预处理和特征工程

机器学习:使用OpenCV和Python进行智能图像处理图书的目录

译者序

前言
审校者简介
第1章品味机器学习 1
1.1初步了解机器学习 1
1.2机器学习可以解决的事情 3
1.3初步了解 Python 4
1.4初步了解 OpenCV 4
1.5安装 5
1.5.1获取本书最新的代码 5
1.5.2掌握 Python Anaconda 6
1.5.3在 conda 环境中安装OpenCV 8
1.5.4验证安装结果 9
1.5.5一睹 OpenCV ML 模块 11
1.6总结 11
第2章使用 OpenCV 和 Python处理数据 12
2.1理解机器学习流程 12
2.2使用 OpenCV 和 Python 处理数据 14
2.2.1创建一个新的 IPython 或 Jupyter 会话 15
2.2.2使用 Python 的 NumPy包处理数据 16
2.2.3在 Python 中载入外部数据集 20
2.2.4使用 Matplotlib 进行数据可视化 21
2.2.5使用C++ 中 OpenCV 的 TrainData 容器处理数据 26
2.3总结 27
第3章监督学习的第一步 28
3.1理解监督学习 28
3.1.1了解 OpenCV 中的监督学习 29
3.1.2使用评分函数评估模型性能 30
3.2使用分类模型预测类别 35
3.2.1理解 k-NN 算法 37
3.2.2使用 OpenCV实现 k-NN 37
3.3使用回归模型预测连续结果 43
3.3.1理解线性回归 43
3.3.2使用线性回归预测波士顿房价 44
3.3.3应用 Lasso 回归和ridge 回归 48
3.4使用逻辑回归对鸢尾花种类进行分类 48
3.5总结 53
第4数据表示与特征工程 54
4.1理解特征工程 54
4.2数据预处理 55
4.2.1特征标准化 56
4.2.2特征归一化 57
4.2.3特征缩放到一定的范围 57
4.2.4特征二值化 58
4.2.5缺失数据处理 58
4.3理解降维 59
4.3.1在OpenCV 中实现主成分分析 61
4.3.2实现独立成分分析 64
4.3.3实现非负矩阵分解 65
4.4类别变量表示 66
4.5文本特征表示 68
4.6图像表示 69
4.6.1使用色彩空间 69
4.6.2图像角点检测 71
4.6.3使用尺度不变特征变换 72
4.6.4使用加速健壮特征 74
4.7总结 75
第5章使用决策树进行医疗诊断 76
5.1理解决策树 76
5.1.1构建第一个决策树 79
5.1.2可视化训练得到的决策树 85
5.1.3深入了解决策树的内部工作机制 87
5.1.4特征重要性评分 88
5.1.5理解决策规则 89
5.1.6控制决策树的复杂度 90
5.2使用决策树进行乳腺癌的诊断 90
5.2.1载入数据集 91
5.2.2构建决策树 92
5.3使用决策树进行回归 96
5.4总结 99
第6章使用支持向量机检测行人 100
6.1理解线性支持向量机 100
6.1.1学习最优决策边界 101
6.1.2实现我们的第一个支持向量机 102
6.2处理非线性决策边界 107
6.2.1理解核机制 108
6.2.2认识我们的核 109
6.2.3实现非线性支持向量机 109
6.3自然环境下的行人检测 110
6.3.1获取数据集 111
6.3.2初窥方向梯度直方图 113
6.3.3生成负样本 114
6.3.4实现支持向量机 116
6.3.5模型自举 116
6.3.6在更大的图像中检测行人 118
6.3.7进一步优化模型 120
6.4总结 121
第7章使用贝叶斯学习实现垃圾邮件过滤 122
7.1理解贝叶斯推断 122
7.1.1概率论的短暂之旅 123
7.1.2理解贝叶斯定理 124
7.1.3理解朴素贝叶斯分类器 126
7.2实现第一个贝叶斯分类器 127
7.2.1创建一个练习数据集 127
7.2.2使用一个正态贝叶斯分类器对数据分类 128
7.2.3使用一个朴素贝叶斯分类器对数据分类 131
7.2.4条件概率的可视化 132
7.3使用朴素贝叶斯分类器对邮件分类 134
7.3.1载入数据集 134
7.3.2使用Pandas构建数据矩阵 136
7.3.3数据预处理 137
7.3.4训练正态贝叶斯分类器 138
7.3.5使用完整的数据集进行训练 139
7.3.6使用n-gram提升结果 139
7.3.7使用TD-IDF提升结果 140
7.4总结 141
第8章使用非监督学习发现隐藏结构 142
8.1理解非监督学习 142
8.2理解k均值聚类 143
8.3理解期望最大化 145
8.3.1实现期望最大化解决方案 146
8.3.2了解期望最大化的局限 148
8.4使用k均值压缩色彩空间 154
8.4.1真彩色调色板的可视化 154
8.4.2使用k均值减少调色板 157
8.5使用k均值对手写数字分类 159
8.5.1载入数据集 159
8.5.2运行k均值 159
8.6把聚类组织成层次树 161
8.6.1理解层次聚类 161
8.6.2实现凝聚层次聚类 162
8.7总结 163
第9章使用深度学习对手写数字分类 164
9.1理解McCulloch-Pitts神经元 164
9.2理解感知器 167
9.3实现第一个感知器 169
9.3.1生成练习数据集 170
9.3.2使用数据拟合感知器 171
9.3.3评估感知器分类器 171
9.3.4把感知器应用到线性不可分的数据上 173
9.4理解多层感知器 174
9.4.1理解梯度下降 175
9.4.2使用反向传播训练多层感知器 178
9.4.3在OpenCV中实现多层感知器 179
9.5了解深度学习 183
9.6手写数字分类 186
9.6.1载入MNIST数据集 187
9.6.2MNIST数据集预处理 188
9.6.3使用OpenCV训练一个MLP 189
9.6.4使用Keras训练一个深度神经网络 190
9.7总结 192
第10章组合不同算法为一个整体 193
10.1理解集成方法 193
10.1.1理解平均集成 195
10.1.2理解提升集成 197
10.1.3理解堆叠集成 200
10.2组合决策树为随机森林 200
10.2.1理解决策树的不足 200
10.2.2实现第一个随机森林 204
10.2.3使用scikit-learn实现一个随机森林 205
10.2.4实现极端随机树 206
10.3使用随机森林进行人脸识别 208
10.3.1载入数据集 208
10.3.2预处理数据集 209
10.3.3训练和测试随机森林 210
10.4实现AdaBoost 212
10.4.1使用OpenCV实现AdaBoost 212
10.4.2使用scikit-learn实现AdaBoost 213
10.5组合不同模型为一个投票分类器 214
10.5.1理解不同的投票机制 214
10.5.2实现一个投票分类器 215
10.6总结 217
第11章通过超参数调优选择合适的模型 218
11.1评估一个模型 218
11.1.1评估模型错误的方法 219
11.1.2评估模型正确的方法 220
11.1.3选择最好的模型 221
11.2理解交叉验证 223
11.2.1使用OpenCV手动实现交叉验证 225
11.2.2使用scikit-learn进行k折交叉验证 226
11.2.3实现留一法交叉验证 227
11.3使用自举评估鲁棒性 228
11.4评估结果的重要性 230
11.4.1实现T检验 230
11.4.2实现配对卡方检验 232
11.5使用网格搜索进行超参数调优 233
11.5.1实现一个简单的网格搜索 234
11.5.2理解验证集的价值 235
11.5.3网格搜索结合交叉验证 236
11.5.4网格搜索结合嵌套交叉验证 238
11.6使用不同评估指标来对模型评分 239
11.6.1选择正确的分类指标 239
11.6.2选择正确的回归指标 240
11.7链接算法形成一个管道 240
11.7.1用 scikit-learn 实现管道 241
11.7.2在网格搜索中使用管道 242
11.8总结 243
第12章综合 244
12.1着手处理一个机器学习问题 244
12.2构建自己的估计器 245
12.2.1使用C++编写自己的基于OpenCV的分类器 245
12.2.2使用Python 编写自己的基于scikit-learn的分类器 247
12.3今后的方向 249
12.4总结 251

部分内容试读

你能看到这里,我非常高兴,是时候来谈谈机器学习了。
机器学习已经不再是一个时髦的词汇,它在我们周围随处可见:保护你的电子邮件、自动在图片上标记朋友、预测你喜欢的电影。作为数据科学的一个子领域,机器学习让电脑可以通过经验来学习:通过收集历史数据来对未来进行预测。
而要被分析的数据是无穷无尽的!目前每天产生的数据量达到了2.5艾字节(约为10亿 GB)。你能相信吗?这些数据足够塞满1000万张蓝光光盘,或者相当于能够持续播放90年的高清视频。为了处理如此庞大的数据,诸如谷歌、亚马逊、微软和脸书这样的公司,投入了大量的人力物力到让我们可以随时随地从机器学习中获益——从你的手机应用扩展到连接着云端的超级计算机的数据平台开发上。
换句话说:现在是时候对机器学习进行投资了。如果你也希望成为机器学习从业人员,那么本书非常适合你!
不过先别急:你的应用并不需要像上面的例子一样规模巨大或者有影响力,才能从机器学习中获益。不积跬步,无以至千里。 因此,本书第一步会通过简单直接的例子,向你介绍统计学习的基础概念,比如分类和回归。如果你已经详细学习了机器学习, 本书将教会你如何学以致用。对了,如果你对这个领域一无所知也没关系——只要你好学即可。
当本书介绍完了所有的基础概念后,将会开始探索各种算法,比如决策树、支持向量机和贝叶斯网络,以及如何把它们与其他 OpenCV 功能结合。在这个过程中,你将会学习如何通过理解数据来理解任务,以及如何构建具有完整功能的机器学习管道。
你的机器学习技能将会随着本书的深入而提高,直到你准备接触这个领域最热的话题:深度学习。结合如何针对任务选择正确工具的训练技巧,我们将确保你可以掌握所有的机器学习基础知识。
在本书的最后部分,你将会准备好面对你自己的机器学习问题,要么基于现有的源代码构建,要么从零开始构建你自己的算法!
本书所涉及的内容
第1章将会简要介绍机器学习不同的子领域,并讲解如何安装 OpenCV 和 Python Anaconda 版本下的其他必要工具。
第2章将展示经典的机器学习处理流程,以及载入处理数据的时机。将会解释训练数据和测试数据之间的区别,以及如何使用 OpenCV 和 Python 载入、存储、处理数据并进行可视化。
第3章将会通过回顾一些核心概念来介绍监督学习的内容,比如分类和回归。你将会学到如何使用 OpenCV 实现一个简单的机器学习算法,如何对数据进行预测,以及如何评估模型。
第4章将会教你如何切身体会一些常见的、著名的机器学习数据集,以及如何从原始数据中提取感兴趣的内容。
第5章将会展示如何使用 OpenCV 构建决策树,以及如何在不同的分类问题和回归问题上使用它。
第6章将会解释如何使用 OpenCV 构建支持向量机,以及如何把它们应用于检测图像中的行人。
第7章将会介绍概率论,并展示如何使用贝叶斯推断来判断邮件是否为垃圾邮件。
第8章将会讨论一些非监督学习算法,比如 k 均值聚类算法和期望最大化算法,并展示如何使用它们从简单、无标签的数据集中提取隐藏的结构信息。
第9章将会把你带到令人激动的深度学习领域。从感知器和多层感知器开始,你将会学习如何构建深度神经网络来对 MNIST 数据集中的手写数字进行识别。
第10章将展示如何高效地集成多个算法,以克服单个学习器的弱点,让预测结果更加准确可靠。
第11章将会介绍模型选择的概念,帮助你针对手上的任务,从不同的机器学习算法中,选择合适的工具。
第12章将会总结本书,并对如何进一步学习机器学习,以及从哪里可以找到更高级话题信息,给出了一些有用的建议。
阅读本书你需要什么
你将需要一台电脑、Python Anaconda 以及学习的激情,非常多的激情。你可能会问:为什么使用 Python?答案很简单:由于它有大量的开源库和可以用于数据处理和交互的工具,这让它最终成为数据科学的专属语言。
其中一个工具是Anaconda Python发行版,它可以提供所需的所有科学计算库,比如 NumPy、SciPy、Matplotlib、scikit-Learn 和 Pandas。此外,安装 OpenCV 仅仅只需一行代码。并不需要设置 cc 编译的选项开关或者从源码进行编译!我们将会在第1章中介绍如何安装 Python Anaconda。
如果你经常结合 C++ 使用 OpenCV,那也没有问题。但是,至少在本书的目标中,还是强烈建议你切换到 Python。C++ 主要应用于开发高性能代码或者构建实时应用。但在学习一项新的技能时,我相信 Python 从根本上说会是更好的语言选择,因为编写的代码少,你就有时间做更多的事情。相对于纠结 C++ 的语法细节,或者花费大量时间把数据从一种格式转换为另一种格式,Python 可以让你更加集中精力在手头的任务上:在机器学习领域变成专家。
样例代码下载
可以从 GitHub上下载本书最新版本的示例代码文件:http://github.com/mbeyeler/opencv-machine-learning。所有的代码以 MIT软件协议发布,因此可以按自己的需要自由地使用、修改和分享。同时也可以在不同的 Jupyter 笔记本中搜索里面的源代码。
如果对源代码有任何疑问,欢迎在我们的论坛上提出来: https://groups.google.com/d/forum/machine-learn

关于此书评价

暂无.

书摘内容

暂无.

机器学习:使用OpenCV和Python进行智能图像处理最新最全的试读、书评、目录、简介信息由个人博客整理提供。

本文地址:https://my.lmcjl.com/book/483

版权声明:个人博客原创文章,转载请注明出处和网址。

,欢迎加入。

本文链接:https://my.lmcjl.com/post/5776.html

展开阅读全文

4 评论

留下您的评论.