大模型中的“罗翔老师”,出现了!

北大团队打造的 法律大模型ChatLaw ,发布即冲上知乎热搜第一。

它具备大模型能力和充足法律知识,能给法律小白们答疑解惑、提供法律建议。

比如针对网络热议事件,它能给出应该参考的法条,并针对具体案例进行分析:

还可以生成专业的法律文书:

仿佛就像是在和真人律师对话。

如果它察觉到人类需要寻求人工服务时,还会推荐相应的法律援助中心。

同时ChatLaw也能成为专业律师们的小助手,帮他们处理繁琐的基础工作。

这就是北京大学深圳研究生院-兔展智能AIGC联合实验室(主任:北大田永鸿教授)带来的最新工作。

他们在通用大模型基础上,使用大量法律领域结构化文本数据进行训练,并找来资深律师辅助人工标注、进行高质量事实型多轮对话,最后炼成了ChatLaw。

与此同时还开源了3个模型:ChatLaw-13B、ChatLaw-33B和ChatLaw-TextVec。

效果到底如何?我们已经拿到内测资格实际体验了~

而且和主创团队问了问ChatLaw背后更多细节。

大模型中的“罗翔老师”

进入主页后,可以发现ChatLaw提供对话、写作、知识库三种模式。

以对话模式为例,又可分为普通类专业类。对话模型包括快速、均衡和详细三种,可以按照自己的需要来做选择。

然后就可以用最普通的大白话,来向ChatLaw描述自己的遭遇了。

和常见的通用大模型不同,ChatLaw不是一上来就回答问题,而是会先引导你补充更多详细信息

这也符合一般法律咨询的情况,当事人往往很难一次性提供全面的信息,很多表述都不明确。

在得到补充信息后,它就能做出相应的分析了。

当然ChatLaw还能处理更加复杂的情况,比如从文件中抽取关键信息做出分析

在下面的场景中,当事人描述了自己突然被公司强制解雇的情况,ChatLaw简单分析后认为,这可能存在劳务纠纷,为了能更准确提供建议,它需要当事人提供劳动合同以及解雇通知等。

可以看到ChatLaw是支持上传文件的。

在拿到对应后,它将信息总结成了一个清晰的树状图,并将事实用法律语言进行描述,和当事人确认情况。

而且ChatLaw也能处理多模态信息,比如读取录音文件。

更进一步还可以生成法律文书。

而且不光是给普通人提供法律咨询服务,ChatLaw还能充当专业律师的助手。

比如可以基于上下文批量生成文书


所以,ChatLaw是如何实现如上效果的?

先验知识约束+模型调度

在构成上,ChatLaw是由1个调度模型和3个子模型组成。

这使得它能更加专业地解决具体问题。

主要创新性工作有两方面:

  • 先验知识约束

  • 模型调度

这两方面工作可以有效降低模型幻觉,并让它能更加灵活智能地解决问题。

先来看先验知识约束方面。

研究团队认为,对于一个垂直领域大模型而言,需要既专业又准确。

尤其是法律这种严肃的行业,一定要尽可能降低模型回答的错误率。

但对于通用大模型来说,训练数据集中往往没有包含非常充足的专业法律知识。比如ChatGPT显然是没有拿国内法条训练过的,乱回答的现象非常严重。

这也就是常说的“模型幻觉”问题。

想要避免就需要进行大量的专业知识训练,即先验知识约束。

在这方面,研究团队使用大量判例文书、法律法规和司法解释,建立了一个大规模知识库。

同时和北大国际法学院、行业知名律师事务所合作,确保数据专业性。

然后在训练阶段将这些法律数据注入大模型中,专门建立一个微调子模型,可以进行关键词检索,来改善单纯依赖矢量数据库检索时不准确的问题。

同时在推理阶段也引入多个模块,将通识模型、专业模型和知识库融为一体,在推理中进行约束,以保证ChatLaw生成正确的法律建议,尽可能减少模型幻觉。

具体模型架构如下:

目前这一方法也同步在arXiv上发表。

据了解,团队还特地整理了过去十年的法考考试题,建立了一个包含2000个问题的司法考试测试集。

通过ELO机制进行检验,ChatLaw模型在测试集上成功击败GPT4,获得最高分

同时也论证了在专业领域,百亿参数量的模型可以保持卓越的准确性。

而在实际应用场景中,仅仅有强大的专业能力还不够,还需要能够灵活应对各种提问。

在这方面,ChatLaw提出了一个“调度模型”的概念。

研究团队使用针对性微调训练了一个专用调度模型,它能够对问题进行分析,然后对子模型和插件进行调度重组,最终呈现出多个模态的输入和输出。

这样一来,ChatLaw就能将文件、音频、文字整合在一起分析,同时支持法律文书、思维导图等输出,还能推荐专业的法律援助。

值得一提的是,除了发布ChatLaw,团队还一并开源了三个模型。

  • ChatLaw-13B,此版本为学术demo版,基于姜子牙Ziya-LLaMA-13B-v1训练而来,中文各项表现很好,但是逻辑复杂的法律问答效果不佳,需要用更大参数的模型来解决。

  • ChatLaw-33B,此版本为学术demo版,基于Anima-33B训练而来,逻辑推理能力大幅提升,但是因为Anima的中文语料过少,导致问答时常会出现英文数据。

  • ChatLaw-Text2Vec,使用93w条判决案例做成的数据集基于BERT训练了一个相似度匹配模型,可将用户提问信息和对应的法条相匹配,例如:

在官方展示的测试中,ChatLaw还可以具备联网能力,效果可以更好。

不过由于目前服务器资源不足,暂时关闭了法条检索模块。

以及在用户隐私保护方面,ChatLaw会对上传的文件数据进行脱敏处理。

和ChatExcel团队师出同门

不过为啥研究团队想要做一个法律领域的专业大模型呢?

这就还得从一家跑路的雅思机构说起了……

主创团队小哥表示,2018年他报名的雅思课,才开课一星期机构就卷钱跑路了。他想要通过法律途径维权,结果发现这还真不是一件容易的事

结合今年的趋势他就想到,能不能让大模型来给普通人提供法律咨询服务。

毕竟大数据也显示,2022年,全国法院共受理案件3372.3万件,其中由律师办理诉讼案件仅有824.4万件。74%的案件没有律师参与,当事人只能自己写材料、诉讼、协商。

而且主创团队还从专业法律人士方面了解到,律师们也很希望有一个AI工具能够帮自己提升工作效率,辅助完成一些基本工作。

(工作发表后马上有专业人士留言希望AI能提供更强大的功能)

ChatLaw的幕后团队是北京大学深圳研究生学院-兔展智能AIGC联合实验室

值得一提的是,他们和之前爆火过的ChatExcel团队师出同门。

都是来自北京大学信息工程学院袁粒老师课题组

袁粒是北京大学信息工程学院助理教授、博士生导师。

团队主创成员有三位,分别是课题组内的准博士生伯华、家熙,以及研究生晏阳。

此外他们也联合了北京大学国际法学院、阿尔法律师事务所提供法律专业建议和指导。

对于法律领域大模型,团队表示他们认为这在国内有着巨大的发展空间。

据了解,目前ChatLaw已经有一些落地合作,而法律领域还只是北大-兔展智能AIGC实验室的第一步。

未来两个月内,他们预计会陆续推出政务、金融等领域的大模型。

并且已经有了商业计划,“想做中国版Cohere”。专注于企业服务。基于法律、政务、金融3个领域,不断完善行业级大模型。

但同时这些能力也会继续向普通人开放。

感兴趣的童鞋,可戳下方体验链接申请内测~

官方地址:https://www.chatlaw.cloud/?

GitHub地址:
https://github.com/PKU-YuanGroup/ChatLaw

论文地址:
https://arxiv.org/abs/2306.16092

本文链接:https://my.lmcjl.com/post/18477.html

展开阅读全文

4 评论

留下您的评论.